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1
I N T RO D U C T I O N

The number of cameras increases rapidly in squares, shopping centers, railway
stations and airport halls. There are hundreds of cameras in the city center of
Amsterdam as is shown in Figure 1.1. This is still modest compared to the tens
of thousands of cameras in London, where citizens are expected to be filmed by
more than three hundred cameras of over thirty separate Closed Circuit Television
(CCTV) systems in a single day [85]. These CCTV systems include both publicly
owned systems (railway stations, squares, airports) and privately owned systems
(shops, banks, hotels). The main purpose of all these cameras is to detect, prevent
and monitor crime and anti-social behaviour. Other goals of camera surveillance
can be detection of unauthorized access, improvement of service, fire safety, etc.
Since the terrorist attack on 9/11, detection and prevention of terrorist activities
especially at high profiled locations such as airports, railway stations, government
buildings, etc, has become a new challenge in camera surveillance. In order to
process all the recording from CCTV systems, smart solutions are necessary. It is
unthinkable that human observers can watch all camera views and analyzing the
surveillance footage afterward is a time consuming task. So the great challenge is
the automatic selection of interesting recordings. For instance, focussing on well-
known shoplifters instead of the shop owner behind the counter. In these cases, the
identity of a person gives important information about the relevance of the scene.
In order to establish the person’s identity, camera surveillance can be combined
with automatic face recognition. This allows us to search for possible well-known
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1. INTRODUCTION

offenders automatically. Combining face recognition with CCTV systems is dif-
ficult, because of the low resolution of recordings and the changing appearance
of faces through different scenes. This research focusses on solving some of the
fundamental technical problems, which arise when performing face recognition on
video surveillance footage. In order to solve these problems, techniques from re-
search on computer vision, image processing and pattern classification are used.
These techniques are used to identify a person based on unique biological or be-
havioral characteristics (biometrics). In this case, the biometric is the face, other
famous examples of biometrics are fingerprint and the iris. To recognize the face in
surveillance footage, we investigate effects which resolution and illumination can
have on existing face recognition systems. We also developed technical methods
to improve the recognition rates under these conditions.

Center of Amsterdam

Figure 1.1: CCTV systems in the City Center of Amsterdam - The Or-

ange Dot’s are locations of camera which make recordings of the public streets of

Amsterdam, from Spot the Cam (www.spotthecam.nl)

1.1 Camera Surveillance

Camera surveillance is conceptually more than a monitor connected to some cam-
eras. Camera surveillance can be seen as a powerful technology to monitor and con-
trol social behaviour. This raises concerns on multiple levels, which are discussed
in Section 1.1.1, where we also mention the public opinion. Camera surveillance
is regulated by laws, which we summarize in Section 1.1.2. In Section 1.1.3 and
1.1.4, we describe the users of CCTV systems and categorize several different sce-
narios for camera surveillance. Finally, we determine the characteristics of CCTV
systems and provide technical details that can be relevant for face recognition.

2
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1.1. CAMERA SURVEILLANCE

1.1.1 Social Opinion

The increased use of camera surveillance is partly caused by the public. ”People
feeling unsafe” is one of the reasons of the city of Amsterdam for installing CCTV
systems [47]. In other Dutch local governments, citizens even requested camera
surveillance to secure their neighborhoods [56]. In a large European investigation
on the subject of camera surveillance, citizens were asked several questions con-
cerning privacy. In this research [53], two thirds agree with the statement: ”who
has nothing to hide, has nothing to fear from CCTV”. On the other hand, more
than half of these citizens believed that recordings of CCTV systems can be mis-
used and 40% believe that it invades their privacy. Concerning the most common
goal of camera surveillance, namely the prevention of serious crime, 56% doubted
that camera surveillance really works.
The acceptance of camera surveillance depends heavily on the location. Most peo-
ple support camera surveillance in banks, railway stations, shopping malls, but
people draw the line by camera surveillance in changing rooms and public toilets,
and also outside the entrance of their homes. Another important related issue is
the persons who have access to the footage. In most countries people agree that
the police should be able to watch the recordings, but other access for instance by
media or for commercial interests should be restricted.
The investigation in [53] shows that many people overestimate the technological
state of camera surveillance. 36% of the people believed that most CCTV sys-
tems are able to make close up images of their faces and 29% believe that most
CCTV systems have integrated automatic face recognition. Although these ideas
are commonly used in television series like Crime Scene Investigation, Bones and
NCIS, a survey of the used CCTV systems in European cities shows that most
CCTV systems are small, isolated and not technologically advanced.

1.1.2 Legal Aspects

In Europe, article 8 (right to privacy) of the European Convention of Human
Rights plays an important role for camera surveillance. Furthermore, the Direc-
tive 2002/58/EC of the European Parliament and of the Council of 12 July 2002,
concerning the processing of personal data and the protection of privacy in the
electronic communications sector applies to recordings of CCTV systems, mak-
ing it illegal to disclose pictures captured from CCTV systems. This Directive,
however, makes an exception for purposes of national security, public safety and
criminal investigations. The precise implementation into national laws differs for
every European country. Next to regulations, some countries, like the UK, have
published guidelines [35] for CCTV systems, showing also clearly the obligations
under the law. Even though these laws are in place, CCTV systems are often in
violation of the national data protection acts. From [53], we know that one out of
two CCTV systems is not notified by signage. In [53], it is also reported that there
are often problems with the responsibility and ownership of the CCTV systems,
especially in case of the smaller systems.
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1.1.3 Users

We already mentioned some of the different uses of the camera surveillance. This
also means that we have various user groups in camera surveillance. For example, a
CCTV system in a shopping mall is used by a security officer to detect shoplifters.
However, the police can afterward request the recordings as evidence of this theft.
The users of other camera surveillance scenarios, like local government, banks,
shops, etc, all differ a lot. For this reason, we choose to make a distinction in the
manner in which the system is used. Our previous example shows that there are
two kinds of users:

• Active surveillance users are for instance the security officer who looks
for offences and guides other officers based on his observations.

• Re-active surveillance users can be the police asking for evidence. In this
case, an action is taken in reaction on certain events, where the recordings
are studied afterwards, for evidence or more information.

At this moment, most systems only support having a re-active surveillance user
[53]. For this reason, our research focusses more on the re-active surveillance.
Note that the requirements of the two users are different, allowing us in this case
to ignore the real-time requirements that are necessary in case of active use of
surveillance systems. However, problems in re-active surveillance are far from
solved. Searching through CCTV footage is still manual labour, especially if sus-
picions or the suspect are not well defined.

1.1.4 Scenarios

Today’s CCTV systems are used in various institutional settings, like in shops,
banks, ATM’s, railway/metro stations/airports, streets, metro’s/buses/trains, high-
way patrol, building security, hospital, etc. We distinguish three global scenarios,
which cover most of the CCTV systems, namely:

• Overview Scenario: In this case, a camera is installed in such manner
that it observes as much of the surrounding as possible. A common example
is cameras in public streets, for the detection of criminal behaviour. In
this case, a clear picture of the body of the subject is more important than
a picture of the face. The disadvantage of this scenario is that the facial
resolution is usually very low. Also occlusions and extreme pose of the face
occur in these recordings.

• Entrance Scenario: At entrances of government buildings, shops or sta-
tions, cameras are installed, which are more tuned to person identification.
A nice property of most entrances is that they only allow a few people to
enter at the same time. This also allows us to focus the camera, giving us
a higher facial resolution. Surveillance cameras near entrances also record
frontal face images, because the viewing direction is usually similar to the
walking direction.
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• Compulsory Scenario: In the compulsory scenario, the person has to look
into a camera because it is necessary or polite. An obvious example is an
ATM which contains a camera in the monitor. People have to look at the
monitor to input their PIN code, which usually gives the security camera
nice frontal facial images with a high resolution. Another example is a cash
deck, where people have to pay for products and look in the direction of the
cashier.

We decide to focus our research efforts more on the last two scenarios. In these
scenarios remain enough challenges especially if we compare this with access con-
trol. In the case of access control, the person cooperates with the system by
looking into the camera, giving the system a second attempt if the first fails. In
the case of camera surveillance person rather avoid camera and have no benefit
in being recorded. In many of the institutional settings, the overview scenario is
combined together with an entrance scenario or a mandatory scenario. In these
cases, the face recognition is usually performed with the higher resolution facial
images obtained from the last two scenarios.

1.1.5 Characteristics of CCTV systems

It is important to determine the characteristics of camera surveillance in order to
perform automatic face recognition on CCTV systems. This can provide insight
into possible problems. Although face recognition is a promising technique for per-
son identification, it is still far from perfect. On high resolution mugshot images,
computers nowadays outperform humans, as is shown in the Face Recognition
Grand Challenge [89]. However, in more uncontrolled situations, automatic face
recognition has failed to achieve reliable results in multiple occasions (for example
at the airports in Dallas, Fort Worth, Fresno and Palm Beach County, [132]). For
this reason, we performed an assessment of the expected problems in face recogni-
tion for CCTV systems, from which we conclude that the following reasons might
cause problems in face recognition:

• Quality of the Recordings: The research of [53] shows that most CCTV
systems are far from advanced. CCTV systems often have a symbolic use
rather than performing permanent and exhaustive surveillance. Although
video recordings are taken, the number of frames is often low due to the
camera’s or limited storage.

• Face Resolution: A well-known issue of camera surveillance footages is the
image resolution. Because the resolution of the recordings is often low, the
regions containing the face contain a small number of pixels (32× 32). This
has consequences on the performance of the overall face recognition, making
accurate recognition extremely difficult.

• Illumination Conditions: Although humans hardly have problems with
changing illumination conditions, in computer vision, this is still largely an
unsolved problem. Due to illumination, the appearance of a face changes
dramatically making face comparison very difficult.
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• Poses: The face is a 3D object, which is able to rotate in different directions.
Although computers are really good in the classification of mugshots, like on
a passport, comparing frontal face images with images of faces with different
poses is extremely difficult, because of occlusions and registration problems.

• Occlusions: In the previous problem, we already mention the occlusions due
to poses, but there are various other reasons for occlusions, like caps, sun
glasses, scarfs, etc. This makes face recognition difficult because important
features are sometimes missing.

1.2 Biometrics

The automatic identification of humans based on their appearance becomes in-
creasingly popular. Secure entrances based on fingerprints, iris or face become
accepted by the public and are sometimes even obliged (for instance to enter the
USA). Furthermore, the use of biometrics increases, where in the past only police
used fingerprints to trace criminals, nowadays fingerprints can also be used to ac-
cess, for instance, a laptop. There are many kinds of biometrics, e.g. fingerprint,
iris, face (2D or 3D), DNA, hand, speech, signatures, gait, ear, etc. The most
popular biometrics are fingerprint, iris and face. One of the main reasons that
fingerprint and iris recognition are popular is the accuracy of the authentication.
This is mainly because the appearance of the biometric is very stable. But like
in every biometric, the appearance slightly changes at every recording, so robust
methods are necessary to deal with these changes.

1.2.1 Face as Biometric

In comparison with fingerprint and iris recognition, the appearance of the face is
very unstable (see section 1.1.5), making it difficult to achieve a good accuracy in
authentication. But unlike most other biometrics, a face can be captured with-
out the cooperation of the person. For humans, faces are also the most common
biometric to identify other humans. For this reason, several official documents,
like the drivers license and passport, contain a facial image. In most western soci-
eties, covering your face is not accepted and usually associated with an immediate
assumption of guilt [62]. For these reasons, faces are popular as a biometric, al-
though the accuracy of identification is lower in comparison to fingerprint and iris
recognition.
A big disadvantage of face recognition is that identity theft is also very easy.
Making a photograph of a person without being noticed is not difficult, while for
many other biometrics, anonymous retrieval of biometric data requires specialized
equipment. This makes face recognition not the most suitable biometric for access
applications. But in the case of camera surveillance, face recognition is one of the
few biometrics that can be used. Furthermore, human observers can easily verify
the automatic findings.
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1.2.2 Example of Face Recognition

Based on research performed in [54], we introduce face recognition by means of
an example. We show that face recognition is far from simple, also for a human
observer. From [89], we already know that humans perform worse on uncontrolled
frontal images, while in [54] research was performed on the capability to identify
persons in CCTV recordings. In order to evaluate the human performance, a
robbery was staged and recorded with both a CCTV camera and broadcast-quality
footage. We show the two robbers in broadcast-quality footage from [54] in Figure
1.2. Notice that CCTV systems usually produce facial images with far lower

Figure 1.2: Footage of a Robbery (Robber 1 and Robber 2) - Face images

of two robbers of a staged robbery, left Robber 1 and right Robber 2, (from [54]

with permission)

resolutions. In order to select the criminal, a line-up is arranged, which is similar
to a gallery in face recognition. Figure 1.3 shows the line-up with the question: ”is
one of the depicted faces the robber’s?” In this example, Robber 1 is person 8 of
the line-up. After viewing the broadcast-quality footage, 60% of the persons pick
the correct face, 13% pick another face and 27% thought that the face was not
present in the line-up. In Figure 1.4, the line-up of robber 2 is shown, where person
5 is robber 2. In this case, 83% recognized the person, 10% picked an incorrect
person and 7% thought he was not in the line-up. By leaving the correct image
out of the line-up in case of robber 1, 47% was correct and 53% selected another
face. The experiment with the footage from a real CCTV system in [54] shows
even worse results are achieved, where 21% selected the correct person in the case
of robber 1 and 19% in the case of robber 2. We think that this experiment shows
how difficult face recognition truly is, even for humans. This example also gives
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an impression of the application to which our research contributes.

Figure 1.3: Gallery for Robber 1 - Does one of the faces belong to robber 1, if

so which face? (from [54] with permission)

1.2.3 Terminology

Based on the previous example, we will now introduce some of the terminology
used in biometrics.
In Figure 1.2, we show two images of the surveillance footage, which are called
probe images. Because we evaluate our face recognition system usually on thou-
sands of images, we denote this set of images as probe/query/test set. The images
in Figures 1.3 and 1.4 are called gallery images, where the set of images is denoted
by gallery/target/enrollment set. In order for a face recognition system to learn
the appearance of a face, a training set is used to make a model of the face. In
order to perform fair experiments, there should be no overlapping images between
the training set and the target/test set.
The purpose of face identification is to determine the identity of the person in the
probe images based on the gallery images. There is open-set identification, which
is the general case, assuming that the person in the probe image can be in the
gallery set, but it is also possible that the person is not present in the gallery set.
In closed-set identification, the person is always present in the gallery set. Next to
face identification, there is also face verification. In this case, there is an identity
claim of the user and we only have to verify if this claim is correct. We compare
the probe image with only one image from the gallery. If the person identity claim
is correct, we call it a genuine user, while if the person claims to be someone else,
he is an impostor.
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Figure 1.4: Gallery for Robber 2 - Does one of the faces belong to robber 2, if

so which face? (from [54] with permission)

In face verification, there are two kinds of errors. For instance, we can claim that
robber 2 is person 5 of the line-up. This is a genuine attempt, so the face recog-
nition system can either accept or reject the claim, where rejection is the first
error. We can also claim that robber 2 is person 3 of the line-up, this is not true
so it is an impostor attempt, making acceptance of this claim the second error.
In Table 1.1, we show the four different outcomes of the face recognition system.
Most face recognition systems assign a similarity score to a certain probe image,

Genuine Attempt Imposter Attempt
Claim accepted True Positive False Positive
Claim rejected False Negative True Negative

Table 1.1: Confusion Matrix - The four different outcomes of a face recognition

system, namely True Positive, False Positive, False Negative, True Negative

which indicates the confidence that the face is of the same person. For the final
decision, a threshold is used to separate the genuine and impostor claims. Based
on the similarity score, we make a graph showing the probability densities of both
genuine and imposter attempts (see Figure 1.5). Because face recognition is a
difficult problem as concluded in the previous section, the densities of genuine and
imposter overlap. This means that there are usually some incorrect classifications,
wherever the threshold is placed. The False Reject Rate (FRR) is the fraction
of genuine attempts which is below the threshold and thus erroneously rejected.
The False Accept Rate (FAR) is the fraction of imposter attempts which succeed.
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Access to a vault of a bank, requires a low FAR, while a higher FRR is acceptable.
The higher FRR results in more false alarms, alarming for instance a security
guards. There are also scenarios where a very low FRR is necessary. In the case
of Grip Pattern recognition on a police gun [106], a high FRR means that the
police gun might refuse to fire creating a life threatening situation for the police
officer. In Figure 1.5, we show the Detection Error Tradeoff (DET), which is very
similar to a Reciever Operating Characteristic (ROC). Instead of using the FRR,
the verification rate is also often used, which is (1 − FRR). These curves give
the relation between FRR and FAR for all thresholds. In order to compare face
recognition methods, multiple ROCs are plotted, where the best curve is the one
which is closest to the axis. To summarize the performance of the face recognition
system by a single number, the Equal Error Rate (EER) is often used, which is the
point where the FAR and FRR are equal. Another possibility is to measure the
performance for a certain FAR or FRR, depending on the system requirements.
The Face Recognition Grand Challenge [89] measures the performance in Verifica-
tion Rate at 0.1% FAR, which basically means the number of genuine users that
are correctly classified if 1 out of 1000 impostor attempts succeed.
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Figure 1.5: Explaination on the DET - Left: Probability densities of genuine

and imposter scores, Right: The DET curve

1.2.4 Face Recognition System

An automatic face recognition system has to perform several tasks to success-
fully recognize a face. Although face recognition can be organized in several ways
[63; 142], we defined the following four components: face detection/localization,
face registration, face intensity normalization and face comparison/recognition.
Face Detection determines the location of the faces if present in the image or
video. The Face Registration aims to more accurately localize the face or land-
marks in the face (eyes, nose, mouth, etc), allowing faces to be aligned to a common
reference coordinate system. During the face registration, we perform geometrical
transformation to the face image in order to make the comparison easier. Next
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to the geometrical transformation, radiometrical transformation has to be applied
normalizing the intensity values of the images for the camera setting and the illu-
mination variations in images. The correction for these effects is performed by the
Face Intensity Normalization component, making for instance faces under different
illumination conditions more comparable. The Face Comparison (often also called
Face Recognition) compares the face against the gallery of faces, which results
usually in similarity scores. Based on the similarity scores, we can determine if
the face is found in the gallery. A schematic representation of an automatic face
recognition system is shown in Figure 1.6. Although we make a clear distinction
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Face
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Normalization

Face
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Figure 1.6: Schematic Representation of Face Recognition System - con-

sisting of four components: Face Detection, Face Registration, Face Intensity Nor-

malization and Face Comparison

between the four components, as can be observed from Figure 1.6, the different
components can overlap each other. Our registration method discussed in chap-
ters 4 and 5 is an example of a method, where different components overlap each
other. This registration method finds the best geometrical transformation by op-
timizing similarity score of the face comparison. In this case, the face registration
component uses the face comparison component, causing overlap between the com-
ponents in the system. A component in a face recognition system also depends
on the previous components. For instance, if the face detection fails, the other
components in the face recognition system are not executed. Another example is
that if face registration aligns a face incorrect, the face intensity normalization can
fail because it expects to normalize the pixels of the eye, but instead normalizes
the pixels belonging to the nose.
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1.2.5 Requirements

Most face recognition systems are tested for the application of access control. An
example is the access control at airports, where the identity of the person is ver-
ified with the photograph on his passport. The access control application has
clearly defined requirements. For instance, a FRR of 1% at FAR of 0.1% has to
be achieved. In this case, the FRR indicates the fraction of genuine persons who
are falsely refused access causing inconvenience. The FAR in access control is the
fraction of persons that enter with a false identity claim, which is a security risk.
Camera surveillance differs from access control, because it is based on a black-
list. This blacklist contains the suspects who need to be recognized. In this case,
the FRR indicates the fraction of suspects that are not caught, implying that the
verification rate gives the probability that a suspect will be caught. Here, the
FAR is the fraction of persons who are falsely recognized as suspects. In camera
surveillance, the FAR quantifies the inconvenience, because in the case of a false
accept, a security officer has to examine the identity of the person.
In Section 1.2.3, we have shown that face recognition in CCTV footage is a dif-
ficult task for humans. Although we admit that computers cannot perform per-
fect recognition, we believe that computers can support humans in narrowing the
search through CCTV footage. For example, consider a security officer who has to
monitor multiple entrances. In practice, the probability that he detects a suspect
at an entrance is small. Now, we added a face recognition systems which has an
FAR rate of 1% and a verification rate of 60%. Out of the hundred persons enter-
ing the building, one person gives a false alarm. In this case, the security officer
can make a decision based on earlier recordings of both the possible suspect and
CCTV footage. This changes the role of the human in the system making him
the specialist. An advantage of this approach is that human observer can usually
look beyond face identification, toward other behavioral characteristics which are
difficult to determine for computers. For suspects, there is already a large risk (6
out of 10) that they will be recognized, which is probably better than the a single
security officer looking at the monitors. It is difficult to define a FRR and FAR
for camera surveillance, because it depends on the scenario. To illustrate this, we
defined a couple of common CCTV systems where face recognition can be used:

• Small Shop: In a small shop, a camera system, that detects suspects, can
help the owner of the shop to focus on known shoplifters. A FRR ≤ 50% at
FAR of 0.1% can already be sufficient. In this case, the person behind the
counter can watch certain suspects more closely. This also deters suspects
from entering the shop, because there is a large probability that they get
caught.

• Shopping mall: In a shopping mall, the number of persons that enter in-
creases in comparison with a single shop. On the other hand, there are
usually security officers, who have the duty to detect criminal behavior. In
this case, a face recognition system with a FRR ≤ 50% at FAR of 0.1% can
already be sufficient, where we reduce the FAR so that an officer takes a
recognition of a suspect still serious.

• Police searching in CCTV recordings: The police usually wants to be sure
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if a criminal is in recordings, instead of setting the FAR, which shops find
important because they do not want to cause too much inconvenience. The
police will set the FRR at around 95% to be sure that most suspects are
found. They can increase the FRR by shifting the threshold if the results
are not satisfying. The disadvantage in this case is that there is big increase
in FAR, but this is always better than searching through all the recordings
without face recognition software.

We have shown that different CCTV systems have different requirements. For
this reason, the more global goal, which benefits all CCTV systems, is to achieve
improvements in the ROC curves, focussing on faces recorded under uncontrolled
conditions.

1.3 Purpose of our research

Automatic face recognition solves the difficult task of recognizing a person based
on the appearance in an image. In order to perform face recognition, several addi-
tional components like registration and intensity normalization are necessary. We
have investigated all components of the face recognition system for the applica-
tion of camera surveillance. In order to improve a face recognition system for this
application, we looked at specific problems which arise in camera surveillance. In
Section 1.1.5, we already discussed the specific characteristics that cause problems
for the face recognition (e.g. low resolution, illumination, pose and occlusions).
This gives the following general research question:

• Can we improve face recognition for camera surveillance by optimizing the
components mentioned in Section 1.2.4 for the application specific charac-
teristics defined in Section 1.1.5?

In order to answer this question, insight in both the components of face recognition
system and the effects that application specific characteristics have, are necessary.
We choose to look at different characteristics separately, where we focus on the
relative low resolutions of facial images and the varying illumination conditions in
facial images. In this case, we ask the following specific questions:

• What is the effect of both low resolution and illumination on the different
components (Face Detection, Face Registration, Face Intensity Normaliza-
tion and Face Comparison) of the face recognition system?

• Which measures can be taken to improve the face recognition system for low
resolution facial images and images captured under uncontrolled illumination
conditions?

• How much improvement of the face recognition performance is obtained with
the before mentioned measures?
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1.4 Contributions

In this thesis, our aim is to improve face recognition in CCTV system. In order
to achieve this, we examine the entire chain necessary to perform face recogni-
tion. Our contribution consists of extensive research on the performance of face
recognition systems for camera surveillance applications. Our contribution can be
divided in three parts:

• Resolution: One of the most well-known problems in CCTV recording is
the low resolution of the facial images. Although multiple investigations are
performed on the effect that resolution has on the face comparison compo-
nent, no research was performed on the effect that resolution has on the other
components in the system. In our investigation on the effects resolution has
on the face recognition system, we look at the entire face recognition system.
This also shows the effects on the face registration, that influence the final
results even more than the face comparison.

• Registration: An important step in the face recognition system is the face
registration. Face registration on high resolution images is often performed
by landmark finding methods. These methods, however, become less accu-
rate or fail if the face resolution decreases. We have developed an holistic
registration methods for low resolution face images. The accuracy of this face
registration method is better than the landmark based registration methods,
while it also achieves a better accuracy on lower resolutions.

• Illumination: Faces recorded in uncontrolled conditions contain illumina-
tion variations, which often cause large variations in the appearance. These
variations are often larger than the difference in appearance between per-
sons. In the literature, different illumination correction methods are devel-
oped that partially solve these problems. These methods are usually tested
on face images recorded in laboratory conditions. Our focus is on the un-
controlled conditions and on correcting the illumination in these images by
modelling the illumination. For this reason, we investigate both local and
global correction methods and combine their strengths. We have also devel-
oped our own illumination correction methods focusing on common problems
that we discovered in faces illuminated under uncontrolled conditions, like
ambient illumination and multiple light sources.

1.5 Outline of Thesis

Next to the introduction, this thesis consist of a general introduction in automatic
face recognition systems, three main parts and the conclusions. The three parts
contain our contributions in resolution, registration and illumination. These parts
begin with a general introduction which is followed by one or multiple chapters
which contain the published or submitted papers and we finish these parts with a
final section which contains the general conclusions of that part. In the introduc-
tions of the parts, we discuss the reason to investigate certain subjects in more
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detail. Furthermore, these introductions describe the relationship between the
underlying chapters. The conclusion of the parts discuss our contribution on the
different subjects and place this in global context of face recognition in camera
surveillance. This thesis contains the following chapters:
In Chapter 2, we give a general introduction in automatic face recognition sys-
tems. This introduction gives an overview of the four different components: face
detection, face registration, face normalization and face comparison. We discuss
several methods that we used throughout out the thesis for these components.
In Part I (Chapter 3), we investigate the effect of image resolution on the er-
ror rates of a face verification system. We do not restrict ourselves to the face
comparison methods only, but we also consider the face registration. In our face
recognition system, the face registration is done by finding landmarks in a face
image and subsequent alignment based on these landmarks. To investigate the ef-
fect of image resolution we performed experiments where we varied the resolution.
We investigate the effect of the resolution on the face comparison component, the
registration component and the entire system. This research also confirms that
accurate registration is of vital importance to the performance of the face recog-
nition [21].
In Part II (Chapter 4), we propose a face registration method which searches for
the optimal alignment by maximizing the score of a face recognition algorithm,
because accurate face registration is of vital importance to the performance of a
face recognition algorithm. We investigate the practical usability of our face reg-
istration method. Experiments show that our registration method achieves better
results in face verification than the landmark based registration method. We even
obtain face verification results which are similar to results obtained using landmark
based registration with manually located eyes, nose and mouth as landmarks. The
performance of the method is tested on the FRGCv1 database using images taken
under both controlled and uncontrolled conditions [22; 26].
In Part II (Chapter 5), subspace-based holistic registration is introduced as an
alternative to landmark based face registration, which has a poor performance
on low resolution images, as obtained in camera surveillance applications. The
proposed registration method finds the alignment by maximizing the similarity
score between a probe and a gallery image. This allows us to perform a user in-
dependent as well as a user specific face registration. The similarity is calculated
using the probability that the face image is correctly aligned in a face subspace,
but additionally we take the probability into account that the face is misaligned
based on the residual error in the dimensions perpendicular to the face subspace.
We evaluated the registration methods by performing several face recognition ex-
periments on the FRGCv2 database. Subspace-based holistic registration on low
resolution images improved the recognition even in comparison with landmark
based registration on high resolution images. The performance of subspace-based
holistic registration is similar to that of the manual registration on the FRGCv2
database [24].
In Part III (Chapter 6), we propose a novel method to correct for an arbitrary
single light source in the face images. The main purpose is to improve recognition
results of face images taken under uncontrolled illumination conditions. We cor-
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rect the illumination variation in the face images using a face shape model, which
allows us to estimate the face shape in the face image. Using this face shape,
we can reconstruct a face image under frontal illumination. These reconstructed
images improve the results of face identification. We experimented both with face
images acquired under different controlled illumination conditions in the labora-
tory and under uncontrolled illumination conditions [23].
In Part III (Chapter 7), we extend the previous method to correct for an ambient
and a arbitrary single diffuse light source in the face images. Our focus is more
on uncontrolled conditions. We use the Phong model which allows us to model
ambient light in shadow areas. By estimating the face surface and illumination
conditions, we are able to reconstruct a face image containing frontal illumination.
The reconstructed face images give a large improvement in performance of face
recognition under uncontrolled conditions [27].
In Part III (Chapter 8), we combine two categories of illumination normalization
methods. The first category performs a local preprocessing, where they correct
a pixel value based on a local neighborhood in the images. The second category
performs a global preprocessing step, where the illumination conditions and the
face shape of the entire image are estimated. We use two illumination normaliza-
tion methods from both categories, namely Local Binary Patterns and the method
discussed in Chapter 6. The preprocessed face images of both methods are indi-
vidually classified with a face recognition algorithm which gives us two similarity
scores for a face image. We combine the similarity scores using score-level fu-
sion, decision-level fusion and hybrid fusion. In our previous work, we show that
combining the similarity score of different methods using fusion can improve the
performance of biometric systems. We achieve a significant performance improve-
ment in comparison with the individual methods [28].
In Part III (Chapter 9), we improve our previous illumination correction methods
to correct for multiple light sources. In order to correct for these illumination
conditions, we propose a Virtual Illumination Grid (VIG) to reconstruct the un-
controlled illumination conditions. Furthermore, we use a coupled subspace model
of both the facial surface and albedo to estimate the face shape. In order to obtain
representation of the face under frontal illumination, we relight the estimate face
shape with frontal illumination. We show that our relighted representation of the
face gives better performance in face recognition. We have performed the challeng-
ing Experiment 4 of the FRGCv2 database, which compares uncontrolled probe
images to controlled gallery images. By fusing our global illumination correction
method with a local illumination correction method, significant improvements are
achieved by using well-known face recognition methods [25].
In Chapter 10, we finish this thesis by summarizing our work. We also state and
discuss our contributions and mention possible recommendations to extend this
work.
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2
FAC E R E C O G N I T I O N S Y S T E M

2.1 Introduction

An automatic face recognition system has to solve a difficult problem. A three-
dimensional object with varying appearance due to illumination, pose, expres-
sions, aging, and other variations has to be recognized from a two-dimensional
image or a video recording. In video surveillance, this task becomes even more
difficult, because of low resolution recordings and persons who deliberately hide
their faces. Face recognition has received much attention during the past decades,
not only for surveillance applications, but also in biometric authentication and
human-computer interaction. Although many face recognition methods have been
developed, many challenges remain especially when faces are recorded under un-
controlled conditions.
The goal of this chapter is to introduce the various components of a face recog-
nition system. We discuss in more detail the tasks defined in section 1.2.4. Each
component is an established research topic on which extensive literature is avail-
able. In this chapter, we give an overview of the most relevant implementations of
these components as described in the literature. On some of the these methods,
we will present a more detailed description.
In this chapter, we will discuss the different components of the face recognition
system in separate sections. The Face Detection/Localization methods are intro-
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(a) Original Image (b) Background Subtraction

Figure 2.1: Background Subtraction of stationary scene - The left figure

shows a stationary scene. Noise in the recording can create small foreground re-

gions shown in the right image. Foreground, background and shadow areas are

respectively denoted by white, black and grey)

duced in Section 2.2. Face Registration is discussed in Section 2.3 and some Face
Intensity Normalization methods are explained in Section 2.4. In Section 2.5, we
finish this chapter with the Face Comparison/Recognition methods.

2.2 Face Detection

Face Detection or Localization detects whether there is a face in the image and
locates it. It is the first step of the face recognition system, which needs to be
reliable because it has a major influence on the remainder of the system. Face De-
tection remains a complicated problem because the appearance of a face is highly
dynamic. For this reason, robust methods are needed to detect faces at different
positions, scales, orientations, illuminations, ages and expressions in images or
video recordings. Another desired property of a face detection method is that it
should detect faces in real-time in order to deal with video streams.
Face detection can be performed using several clues in the video sequence or the
image. If a person enters a room monitored by a surveillance camera, the im-
age changes considerably. By remembering the background, which was an empty
room, we can determine the foreground corresponding to the person in the image.
We will briefly discuss the methods for foreground and background detection in
Section 2.2.1. Another clue for face detection in color images can be skin color.
This can vary due to illumination and racial differences. We will introduce skin
color detection methods in Section 2.2.2. Face detection methods can also use the
facial appearance in images, where these methods learn the difference between a
face/non-face region. These methods classify each region in the image into regions
containing a face and regions not containing a face. Section 2.2.3 will give an
overview of several face detection methods based on appearance. In Section 2.2.4,
we combine different methods and explain the possible advantages of combining
face detection methods.
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2.2. FACE DETECTION

(a) Original Image (b) Background Subtraction

Figure 2.2: Background Subtraction of a person entering the room - This

scene shows the background subtraction results of a person entering the room. The

region in the image where the person is located is marked as foreground (white),

The shadow on the door is marked grey

2.2.1 Foreground and Background Detection

In video surveillance, a common setup is that a static camera observes the en-
trance. In this case, the scene is only interesting if someone enters, which will
change the scene. Detecting these changes is essential in video surveillance. This
reveals the location of the person in the image and it also allows us to ignore the
part of video recordings where nothing happens. Methods used to detect intrud-
ing objects in a scene are known as “background subtraction methods”. These
background subtraction methods assume that the scene without intruding objects
shows stationary behaviour where color and intensity change only slowly over time.
This behaviour can be described by a statistical model, which models each pixel
separately over time. In [134], a single Gaussian model is used to describe the
background. Because pixel values often have more complex behaviour, the Gaus-
sian Mixture Models (GMM) are also used for background subtraction [117; 145].
In Figures 2.1 and 2.2, examples of background subtraction with the GMM method
described in [145] are shown. We observe that the stationary scene (Figure 2.1)
contains almost no foreground, although some foreground pixels are visible due
to noise in the video recordings. Once a person enters the room, this person is
marked as foreground and can easily be detected in the image, as shown in Fig-
ure 2.2. Although background subtraction methods can locate a person entering
the room, locating the face of the person requires more heuristics. Background
subtraction methods can also fail when video recordings contain a constant mo-
tion; for example, a revolving door.
The use of background subtraction for face detection is usually in combination
with other methods. Background subtraction, however, clearly shows the bound-
aries of the face, whereas face detection methods based on appearance usually only
give a rough location.
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2. FACE RECOGNITION SYSTEM

(a) Original Image (b) Background Subtraction

Figure 2.3: Skin Color of a person - This scene shows the skin color detection

results of [66] on a person, clearly detecting the regions in the image which contain

skin color

2.2.2 Skin color Detection

Skin color can be an important clue for the presence of a face in an image. There
are several methods in the literature that perform face detection based on skin
color, for instance [1; 58; 116]. Although the skin color of people of different
races varies, different studies show that the major difference is in intensity rather
than in chrominance. Several color spaces have been used to label the human
skin color including RGB (Red, Green, Blue)[66], HSV or HSI (Hue, Saturation,
Intensity)[113], YIQ (Luma, Chorominance)[43] and YCrCb (Luma, Chroma Blue,
Chroma Red)[58].
Many methods have been proposed to model skin color. Simple models define
thresholds in a color space in order to determine if the image contains skin color
[1; 58]. Other methods are based on Gaussian density functions [31; 135] or
a Mixture of Gaussian densities [59; 66]. In [66], a large scale experiment is
conducted with nearly one billion labeled skin color pixels. Using these images, a
skin and a non-skin color model are constructed and the likelihood ratio is used for
classification. Results of our implementation of this method are shown in Figure
2.3, where both head and arms are located.
Locating the skin color alone is usually not sufficient to locate the face. In Figure
2.3, other body parts are located as well with this technique and scenes can contain
objects with similar colors. In [58], two other facial features (eyes,mouth) are also
detected using their specific colors and the combination determines if a face is
present. Others use a combination of shape analysis, skin color segmentation and
motion information to locate the face, for instance in [49; 114].

2.2.3 Face Detection based on Appearance

Face detection based on appearance is basically a two class problem separating
between faces and non-faces. The face is a complex 3D object which changes in
appearance under different conditions. Pattern classification allows us to learn the
differences in appearance between face and non-face regions, by using a training
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set, which contains both examples of faces and non-faces. Furthermore, the speed
of a face classification method is important, because almost every region (changing
position, scales and sometimes rotation) of the images has to be classified.
In the literature, many pattern classification techniques have been used for face
detection. In this section, we will distinguish between the linear and non-linear
methods:

• Linear: In [123], Turk and Pentland describe a detection system based on
principal component analysis (PCA). They model faces using the Eigen-
face representation, computing a linear subspace for faces. Moghaddam and
Pentland [80] use both the face space and the orthogonal complement sub-
space, allowing them to calculate a distance in face space (DIFS) and dis-
tance from face space (DFFS). Combining the likelihood of both subspaces
provides them with more accurate detection results. In [118], multiple face
and non-face clusters are defined using multiple subspaces. An advantage of
these linear methods is that they are relatively fast to compute in compar-
ison with non-linear methods. However, they are sometimes not adequate
to model the complex and highly variable face space, resulting in a lack of
robustness against the highly variable non-face space.

• Non-linear: In [97], a retinally connected neural network is used to classify
between faces and non-faces. A bootstrapping method is adopted, because
the non-face space is much larger and more complex than the face space.
This makes it difficult to collect a small representative set of non-faces to
learn this space. Instead of learning all possible non-face patterns, the idea
of bootstrapping is to perform the classification in several stages, where the
first stages handle the “easy” patterns and the later stages classify the more
difficult patterns. This can be achieved by introducing non-face samples,
which are misclassified in previous iterations, into the training of the classi-
fier for later stages. These misclassified samples are more difficult, needing
emphasis from these classifiers. Other face detection methods based on neu-
ral networks are the probabilistic decision-based neural network (PDBNN)
[75] and sparse network of winnows (SNoW) [96]. The Support Vector Ma-
chine (SVM) [124] is another non-linear classifier that is often used for face
detection [73; 87]. The goal of SVM is to find the maximum separation
(margin) between two classes by a hyperplane. This is achieved by finding a
hyperplane where we can maximize the margin between the points nearest
to the border, see Figure 2.4. Using the kernel trick [4], we can also fit the
maximum-margin hyperplane to non-linear feature spaces. In [104], multi-
resolution information is obtained using the wavelet transformation. This
information gives us features to learn a statistical distribution with prod-
ucts of histograms. Using Adaboost, histograms are selected that minimize
the classification error on the training set. One of the best-known meth-
ods is the framework for face detection proposed by Viola and Jones [127].
This method can be divided into three important components, namely the
Haar-like features, the Adaboost learning method and the cascade classifica-
tion structure. This method is especially developed for rapid face detection,
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2. FACE RECOGNITION SYSTEM

Figure 2.4: Separating two classes - The dotted line is not able to separate the

two classes, the dashed line separate the classes with a small margin, while the solid

line separate the classes with the maximum margin

where the Haar-like features can be computed quickly on multiple scales
using an Integral Image. Adaboost selects the weak classifiers, which are
Haar-like features together with a threshold, and combines the weak clas-
sifiers into a strong classifier. The cascade structure allows us to pay less
attention to the easy background patterns, and spend more time in com-
putation of difficult patterns, as in Figure 2.5. The first strong classifiers
determined by Adaboost are simple and reject non-face patterns using only
a few features, the last strong classifiers are have to separate difficult pattern
which requires much more features. This method is able to process images
very quickly, but it still can make a good distinction between the complex
patterns of faces and non-faces.

Strong
Classifier 1

Strong
Classifier 2

Strong
Classifier 9

Strong
Classifier N

Rejected
TP rate: 0.99
FP rate: 0.50

face/non-face
pattern

A
ccepted

Rejected
TP rate: 0.98
FP rate: 0.25

Rejected
TP rate: 0.91

FP rate: 0.002

Rejected
TP rate: 0.99 N

FP rate: 0.50 N

Figure 2.5: Cascade of Strong Classifiers - The strong classifiers reject the

easy non-face patterns leaving the difficult patterns for the last stages, the total

true positive (TP) and total false positive (FP) rate after each stage are shown if

the individual strong classifiers have a TP rate of 99 % and a FP rate of 50%
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2.2.4 Combining Face Detection Methods

In the previous sections, we discussed several methods to locate the face in video
recordings and images. In this section, we combine some of the previously men-
tioned methods where our focus lies on the domain of video surveillance. In video
streams of a surveillance camera, we are interested in changes which occur in the
scene. For this reason, we apply the background subtraction method described in
Section 2.2.1. Most of these methods are not computationally complex and always
detect the region which contains the person reliably. If we use a camera which
records color images, the pixels which are labelled by the background subtraction
methods can be classified by a skin color method (see Section 2.2.2), narrowing
the interesting regions even more.
Because these methods do not exclude detection of objects other than faces, we

Figure 2.6: Selecting rectangular regions from blobs - This figure shows

possible labelled regions (grey blobs) found with background subtraction and/or

skin color detection, the task is to select rectangular regions at different scales to be

used as input for appearance based face detection

finally use a face detection method based on appearance, searching only in the re-
gions left by the previous methods. All appearance based face detection methods
are computationally complex, even the framework of Viola and Jones. Reducing
the search regions that can contain faces helps to reduce the number of computa-
tions. It however is not a straightforward task as can be observed in Figure 2.6,
where both background subtraction and skin color detection give blob like regions,
while the appearance based method uses a rectangular region. In this case, we de-
fine a mask containing a label 1 in case the pixel belongs to the foreground and
contains skin color, while the other pixels get a label 0. By using an Integral Image,
we can quickly determine the percentage of labelled pixels in a region. All regions
containing more than 80 % labelled pixels are processed by the appearance-based
method.
Combining the face detection methods reduces the computational complexity, be-
cause we only focus on areas which are worthwhile to investigate. However, com-
bining these methods might introduce some false negatives, especially the skin
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2. FACE RECOGNITION SYSTEM

color detection is sometimes incorrect. The advantage is that it also reduces the
number of false positives in comparison with only using appearance-based face
detection.

2.3 Face Registration

For face recognition, it is necessary that the faces are aligned by transforming them
to a common coordinate system. While face detection only finds a rough position
of the face in an image, face registration refines the positioning and performs
other transformations like scaling and rotation to make the comparison between
facial images possible. It has been shown that accurate registration improves the
performance of face recognition [95],[17]. Because public face databases usually
contain manually labelled landmarks, which are used for registration in academic
research, “optimistic” results are obtained compared to a fully automatic approach.
There are several ways to register images, where the most common methods are
based on locations of certain landmarks in the face. In this section, we will discuss
some landmark-based registration methods. A simple method to find landmarks
is based on the framework of Viola and Jones, see Section 2.3.1. More advanced
methods, like MLLL and BILBO also use the relation between landmarks to correct
for outliers (Section 2.3.2). Other registration methods perform an iterative search
to correctly register the face. Examples of such registration methods are the Elastic
Bunch Graphs (Section 2.3.3) and Active Appearance Models (Section 2.3.4). In
Chapters 4 and 5, we introduce our own holistic face registration methods, which
are developed for video surveillance applications. A comparison between a number
of landmark based registration methods and the holistic face registration method
can also be found in Chapters 4 and 5.

(a) (b)

Figure 2.7: Positive and Negative Training Samples - (a) Positive examples

of the Left Eye, with a region size of 30 × 20, (b) Negative examples are random

regions of 30× 20 selected from the face image where we mask out the left eye with

a grey window
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2.3. FACE REGISTRATION

2.3.1 The Viola and Jones Landmark Detector

A popular method for finding landmarks in facial images is the framework of
Viola and Jones [127]. In section 2.2.3, we already introduced this method for face
detection, but this method can also be used to find facial landmarks. In order
to train this method, we take the exact landmark region as positive examples
(Figure 2.7). The negative examples are obtained from remaining parts of the
face images (see Figure 2.7). The advantages of the Viola and Jones method are
the computation time and the robustness. Disadvantages are that landmarks are
sometimes not detected at all, that landmarks are detected in multiple regions or
that landmarks are detected at incorrect locations (outliers). To overcome these
problems, heuristics and constraints can be used to remove outliers and select
the correct landmarks. If many landmarks are used, missing landmarks are no
problem, because the alignment usually can be calculated from a subset of all the
landmarks.

2.3.2 MLLL and BILBO

Subspace methods to locate facial landmarks are described in [15; 18; 46; 80]. In
this section, we will discuss the Most Likely Landmark Locator (MLLL) [15; 18]
in more detail. MLLL searches for landmarks by calculating for each location
p = (x, y)T a likelihood ratio that the landmark is present. The likelihood ratio
is defined as follows

Lp =
P (xp|L)
P (xp|L̄)

�� ��2.1

where xp are the vectorized gray-level values around the location p. The
likelihood ratio is the quotient of the probability density function P (xp|L) of
feature vector xp, given that the location contains a landmark, and the probability
density function P (xp|L̄) given that the same feature vector contains no landmark.
Assuming that both probability density functions are normal, we can compute the
log likelihood ratio as follows[15]

Sp = −(yp − ȳL)TΣ−1
L (yp − ȳL)

+(yp − ȳL̄)TΣ−1
L̄

(yp − ȳL̄)
�� ��2.2

In this equation, yp is a dimensionality reduced feature vector of xp, using
subsequently PCA 2.5.1.1 and LDA 2.5.1.3. ȳL, ΣL and ȳL̄, ΣL̄ are the reduced
landmark mean and covariance matrices and the reduced non-landmark mean
and covariance matrices. We obtain the means and covariance matrices from
training based on examples of landmarks and non-landmarks, see Figure 2.7. By
determining the log likelihood ratio score for each location, MLLL finds landmarks
on the locations where the score is maximal.
Because landmark locations are sometimes incorrect, a method is developed to
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Figure 2.8: Example of landmark finding - Circles are incorrect landmarks

found by MLLL and the squares depict the landmark after correction using BILBO

detect and correct these landmarks. To detect the incorrect landmarks, we use
the relation between landmarks. A collection of relative landmark coordinates
(xi, yj) form a shape s = (x1, ..., xn, y1, ..., yn) and we assume that correct shapes
can be modelled by a subspace, while incorrect shapes are outside this subspace.
Using PCA, we are able to learn a subspace of shapes from a training set of correct
face shapes, giving us a basis Ps. Once a new shape s is determined by finding
the landmarks, we can projected the shape to the subspace and back: s′ = PsP

T
s s

(BILBO), which results in the modified shape s′. In the modified shape, the
locations of the incorrectly found landmarks have changed significantly, while the
other landmark locations change only slightly. The landmark locations, which
differ significantly, are determined by thresholding. These landmark locations
are corrected to the landmarks locations given by the modified shape s′. This
procedure is repeated for a few iterations. The results of MLLL (dots) and some
corrections by BILBO (squares) are shown in Figure 2.8.

2.3.3 Elastic Bunch Graphs

Elastic Bunch Graphs [133] are intended for both registration and recognition
of faces. This method fits an Elastic Bunch Graph to the facial image. At each
landmark location, a bunch of Gabor Jets is defined, which consists of 40 different
Gabor features. Gabor features can be calculated using a convolution with a
Gabor filter, with different orientations and frequencies. As an example, two
Gabor filters with different frequencies and orientations are shown in Figure 2.9.
For each landmark, a bunch of Gabor Jets is defined, which represents the different
appearances of that landmark. For the eyes for instance, the different Gabor Jets
may include open, closed, male, female eyes and glasses. The best fitting Gabor
Jet is then selected to refine the search for the best location. These Gabor Jets are
placed in a graph which limits the search space and also constrains the landmarks
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Figure 2.9: Gabor filters - The first column contains the original image, second

column contains two examples of Gabor filters, third column shows the imaginary

part after convolution of the filter with the face image, fourth column contains the

magnitude after convolution of the filter with the face image

locations. Another advantage of the graph is that landmarks can also be placed
at locations which are not clearly defined landmarks. By connecting different
landmarks, like eyes, nose and mouth, intermediate points can be defined in the
cheeks and on the forehead. Elastic bunch graphs also use the contour of the face,
defining landmarks on the contour at the same horizontal and vertical axis as well-
known landmarks like eyes, nose and mouth. The goal of the Elastic Bunch Graph
is to find a graph which fits to the facial image. In this case, they search for the
location which best matches the Gabor Jets but at the same time constrain the
search by using the Elastic Bunch Graph which limits certain impossible landmark
locations. A coarse to fine search is performed, because of the complexity of the
search space and to reduce computation time.

2.3.4 Active Shape and Active Appearance Models

In order to register a face, models can be used to describe the different appearances
of faces. Multiple landmarks of the face together form a shape s, as is already
discussed in Section 2.3.2. In the Active Shape Models (ASM) [37], a subspace
model of the variations of the shape is computed using PCA, which gives us the
following equation

s = s̄− Psbs
�� ��2.3

where Ps contains the eigenvectors that correspond to the largest eigenvalues and
s̄ represents the average shape. The vector bs defines the variations of the shape.
For a given shape s, these parameters are bs = PTs (s − s̄). This shape model
is obtained from a training set of facial images together with labelled landmark
positions (where ASM and AAM usually use around 65 landmarks). Given the
shape s, we can also define a transformation Tθ to the pixel values, where we
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transform the normalized shape into the shape in the image. This real shape is
defined as S = Tθ(s), where θ consists of the parameters for translation, rotation
and scaling. In order to register an Active Shape Model, the following iterative
approach can be used:

• Examine a region of the image around each landmark Si to find the best
nearby match for the point S′i

• Update the model parameters bs according to the newly found positions
• Repeat until convergence

Although this approach seems simple, there are many different approaches to
match the landmarks, which we will not discuss in detail, because they are usually
domain dependent. To give an idea, landmarks can be located using gray values,
edges or by determining the profile of the face at multiple resolutions. For certain
landmarks, we can also build a statistical model of the gray values, which is very
similar to Active Appearance Models.
The Active Appearance Models (AAM) [38] can be seen as an extension of the
Active Shape Model. In Active Appearance Models, we also model the texture
using PCA, so we get the following equations:

s = s̄−Qsc
�� ��2.4

x = x̄−Qxc
�� ��2.5

In this case, the appearance model is modelled by the parameters c, which controls
both the shape and texture (appearance). Besides the appearance model parame-
ters, other parameters are used in [38] to deal with translation, rotation and scale
transformations of the shape (θ) and intensity scaling and offset (u). Using the
shape s obtained from the model parameters together with the parameters θ and
u, we can create a shape free image xs from the original image. The current model
texture is given by xm = x̄−Qxc, where the difference between model and image
measurements is r(q) = xs−xm. The goal is to minimize this difference r(q) with
respect to the all parameters q = {cT ,θT ,uT }. There are several approaches to
find these parameters, for example [11; 38; 57]. Active Appearance Models can
perform a very fine registration, but sometimes fail to converge, especially if the
initial estimate is not precise enough.

2.4 Face Intensity Normalization

Face Intensity Normalization changes the intensities of the pixels in such a way
that the faces become better comparable. Camera settings and variations in illu-
mination make it very difficult to compare images using face recognition methods.
In order to compare the faces, they have to become invariant to these effects. This
can be achieved by finding an invariant representation. Another approach is to
model the effects in order to correct the facial images to a standard representation.
The face intensity normalization can also be learned by face recognition methods,
making them to a certain extent invariant to these variations. We have observed
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that especially in the case of more uncontrolled acquisition conditions large im-
provements in recognition results can be achieved by performing normalization.
In this section, we divide the face intensity normalization methods into two cate-
gories: The first category contains methods that normalize the face image based
on a local region around a pixel position. Two examples of methods are His-
togram Equalization [105] and (Simplified) Local Binary Patterns [55],[121]. More
advanced methods that are especially developed to correct the illumination are
[50; 119; 128], which usually make simple assumptions about the behavior of illu-
mination. The second category contains methods that estimate a physical model
of reflectance in faces based on the entire image. This category includes for in-
stance the Quotient Image [107], Spherical harmonics [14], 3D morphable models
[20].
In our research, we developed our own illumination corrections methods, which are
discussed in Chapters 6 to 9. In order to compare these methods, we have used
methods from both categories. In section 2.4.1 and 2.4.2, we will discuss Local
Binary Patterns and a method developed by Gross et al [50], which are two face
intensity normalization methods, that perform correction based on local image
information. In section 2.4.3, a short explanation of the illumination correction
method of Sim et al [110] is given, which is a method in the second category that
uses the Lambertian reflectance model.

2.4.1 Local Binary Patterns

Local Binary Patterns (LBP) are introduced in [86] and it has been shown that
they form a set of robust features for face recognition [3]. The standard LBP,
shown in Figure 2.10, assigns to each of the pixels of a 3 × 3-neighborhood the
value 0, if the pixel value is smaller than the center pixel value and 1 otherwise.
This gives a 8-bit string, which can be used to represent the texture at that point.
It is also possible to select larger neighborhoods, which allows us to capture larger
scale structures.
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Threshold
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1 1 0

1

0 0
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11010011

Figure 2.10: Local Binary Pattern - Example to determine the LBP value from

a pixel neighborhood

These features can also be used as a preprocessing step in face recognition to
obtain a representation independent of illumination variations [55]. An extension
to LBP, called (Simplified) Local Binary Patterns is developed in [121] which can
be used to become invariant to illumination conditions.
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2.4.2 Local Reflectance Perception Model

There are several local methods to obtain illumination invariance [50; 119; 128],
which are weakly based on reflectance properties. The method developed by Gross
et al [50] is motivated by two assumptions about human vision: First, the human
vision is mostly sensitive to reflectance and insensitive to illumination variations.
Second, the human vision responds to local changes in contrast. This method uses
the following reflectance model:

I(p) = L(p)R(p)
�� ��2.6

The image I at position p consists of the reflectance R and the illuminance
L. In deep shadow areas, human perception makes small changes in these area
result in big changes in perceived sensation. However, of illuminated areas, small
changes in these areas result in smaller changes in the perceived sensation. This
gives an inverse relation of the image intensity I with a local neighborhood Φ and
the perceived sensation. The inverse relation can be formulated in the following
equation: 1/IΦ. The perceived sensation will be in our case the reflectance and
intensity of local neighborhood gives the properties of the illuminance L. By
replacing L(p) with a smooth version of IΦ, which is calculated using an anisotropic
function, we can obtain R(p) from Equation 2.6. The reflectance R(p) gives us an
illuminance free representation of the face, where the output of this face intensity
normalization method is used in Figure 1.6.

2.4.3 Illumination Correction using Lambertian reflectance

model

The Lambertian reflectance model is used in, for instance, the following papers
[48; 107; 110; 128; 143; 144], to correct for illumination in facial images. Our own
illumination correction methods also use the Lambertian reflectance model. The
Lambertian reflectance model describes the image intensity b ∈ R at a certain
position p = {x, y} as follows:

b(p) = ρ(p)nT (p)si
�� ��2.7

where the surface normals n ∈ R3 and the albedo ρ ∈ R together define the face
shape h(p) = ρ(p)n(p)T . The direction of the light is a normalized vector given
by s ∈ R3, and the intensity of the light is given by i ∈ R. Together they form
the light conditions v = si. Notice that shadows and specular reflections are not
modelled in Equation 2.7.
In order to correct for illumination variations in facial images, the variables in
Equation 2.7 have to be estimated. The method of Sim et al [110] uses a boot-
strap database of faces to learn certain properties of the illumination. In order to
model shadows and specular reflections, an error term e(p,v) is introduced, which
depends on the light conditions v. The method of Sim et al contains the following
steps to correct for illumination in the face:
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• Given the image, estimate the illumination conditions v using kernel regres-
sion. The kernel regression is trained on a bootstrap database of faces with
labelled illumination conditions.

• Given the illumination conditions v, compute the error term e(p,v) contain-
ing possible shadows and specular reflections.

• Estimate the face shape h(p) at each pixel p using a MAP estimator of the
face shape.

• Synthesize a new image under a different illumination condition using the
estimated face shape.

Illumination correction comes down to synthesizing the standard (e.g. frontal)
illumination conditions in a face image.

2.5 Face Comparison

Face Comparison (often also called Face Recognition) is basically a pattern clas-
sification problem. In face comparison, there are two scenarios, namely face ver-
ification and face identification. In face verification, a person claims an identity
and the system has to decide whether this claim is correct or not. This makes the
verification problem a two-class classification problem. Face identification is more
difficult, given a face image we need to determine the person’s identity, where
we have to solve a multi-class classification problem. In order to determine the
identity of a person, a recorded face image (probe images) has to be compared
to face images in a database (gallery images). In the case of verification, the face
comparison assigns a score, which represents the probability that both face images
contain the same person. For face identification, we can easily extend this scheme,
assigning all persons in the gallery this score and selecting the best score.
In the literature, many methods have been proposed to perform a face compar-
ison. We categorize these methods into two main groups, namely Holistic Face
Recognition Methods and Face Recognition using Local Features. In the follow-
ing sections, we discussed some of the most well-known face recognition methods
together with the methods we used during our experiments. In Section 2.5.1, we
elaborate on the holistic face recognition methods and the relationship between
these methods. Most of the face recognition methods are holistic methods, while a
smaller part of the face recognition methods use local features. We discussed two
well-known face recognition methods which use local features in Section 2.5.2.

2.5.1 Holistic Face Recognition Methods

The idea of holistic face recognition is to model the global changes in the appear-
ance of faces. By defining a face space, which is a subset of the image space, we
can define for each face a position in this face space based on its appearance. The
challenge is to define a face space, which separates the face of different persons,
while ignoring other effects like expressions, illumination and pose changes.
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2.5.1.1 Principle Component Analysis

Principal Component Analysis (PCA) is a technique to reduce dimensionality of
complex data. In [69], this technique is proposed for face analysis and representa-
tion, where Turk and Pentland [123] are the first to apply PCA in face recognition.
PCA finds a linear combination of principle components, which have the highest
variance and are orthogonal to the previous components. This allows us to reduce
the high dimensional data (in case of face recognition images containing around
10000 pixel values) into a reduced feature vector (containing around 300 values).
With these reduced feature vectors, we are then able to represent the face data.
This representation of the face is also less sensitive to noise or blurring effects in
the image. In order to find the principle component, a training set of N face im-
ages is needed, a vectorized representation of the two dimensional images is given
by x1, ...,xN , where x̄ is the mean face vector and Σ is the covariance matrix. We
find the eigenvectors Φ and a diagonal matrix with the eigenvalues λ1 ≥ ... ≥ λN of
the covariance matrix Σ. After obtaining the eigenvectors, we are able to calculate
the reduced feature vector as follows y = ΦT (x− x̄), which gives us the variations
of the subspace. In [123], the distance between two reduced feature vectors is de-
termined using the Euclidean distance. This measures if two faces have a similar
variation from the mean face. There are also different distance measures than the
Euclidean distance. Other commonly used distance measures in face recognition
are the Mahalanobis distance or Mahalanobis-Cosine distance.

2.5.1.2 Probablistic EigenFaces

In the previous section, we discussed PCA for face recognition, measuring the
similarity between two images I1 and I2 in a subspace. This work is extended by
Moghaddam and Pentland [80]. We use this evaluation measure in chapter 5. They
define a probablistic similarity measure based on the probability density function
P (∆|Ω) where ∆ = I1 − I2 and Ω denotes the object class of face images for the
same person. By using PCA, we divide into the face space in two subspaces, namely
the principal subspace F = {Φi}Mi=1, which reduces the feature vector from N to
M dimensions, and the orthogonal complement F̄ = {Φi}Ni=M+1 spanned by the
remaining columns of Φ. In Figure 2.11, a graphical representation is given. We
can decompose the probability density function into two orthogonal components
and assume that they are both Gaussian densities:

P̂ (∆|Ω) = PF (∆|Ω)P̂F̄ (∆|Ω)

=
[exp

(
− 1

2

∑M
i=1

y2
i

λi

)
(2π)M/2

∏M
i=1 λ

1/2
i

][exp
(
− ε2(∆)

2ρ

)
(2πρ)(N−M)/2

] �� ��2.8

where PF (∆|Ω) is the true marginal density in F and P̂F̄ (∆|Ω) is an estimate
marginal density in F̄ . Using PCA, we obtain the reduced feature vector y = ΦT x̃
and ε is the PCA reconstruction error given by:

ε(x) = ||x−
M∑
i=1

(φTi x)φi||
�� ��2.9
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F

F

DIFS

DFFS

Figure 2.11: Schematic representation of the Subspaces - Showing the prin-

ciple subspace F and its orthogonal complement F̄

In Equation 2.8, ρ is the average of the N −M smallest eigenvalues. In practise,
we use log of the two density functions which gives us two distance measures. The
first distance measure is the Distance In Feature Space (DIFS), which is the same
as the Mahalanobis distance. The second distance measure gives us the Distance
From Feature Space (DFFS), both distances are also depicted in Figure 2.11.

2.5.1.3 Linear Discriminant Analysis

Variations in face images are usually not only due to different identities, but they
are also caused by for instance expression, illumination and poses of the face. The
PCA method retains these variations, which means that measuring the similarity
in this subspace does not have to be optimal for identity variations. In [16],
Belhumeur et al. have proposed to solve face recognition using Linear Discriminant
Analysis (LDA), also called Fisherfaces or Fisher’s Linear Discriminant (FLD).
LDA is supervised dimensionality reduction method, in contrast to PCA which
is unsupervised. Using LDA, we try to minimize the distance between faces of
the same person (within-class scatter) and maximize the distance between faces
of different person’s (between-class scatter). The within-class scatter is defined as

Sw =
C∑
c=1

∑
x∈ωc

(x− x̄c)(x− x̄c)T
�� ��2.10

and the between-class scatter is defined as

Sb =
C∑
c=1

Nc(x̄c − x̄)(x̄c − x̄)T
�� ��2.11
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where x̄c is the mean of class ωc, x̄ is the total mean, Nc is the number of samples
of class ωc, and C is the number of classes. We now have to solve the following
eigenvalue problem to find the projection matrix:

ΦLDA = arg max
Φ

|ΦTSbΦ|
|ΦTSwΦ|

�� ��2.12

In practise however, we first perform a PCA dimension reduction before applying
LDA because Sw is usually singular. Furthermore, because LDA finds a reduction
to separated the classes, it is shown in [126] that the dimensionality of ΦLDA is at
most Nc.

2.5.1.4 Likelihood Ratio for Face Recognition

In order to classify faces, we can use the likelihood ratio, which is an optimal
statistic in the Neyman-Pearson sense [82]. The likelihood ratio is defined as

L(x) =
p(x|ω)
p(x|ω̄)

�� ��2.13

where ω denotes a certain class and ω̄ denotes all other possible classes. By
assuming an infinite number of classes in the sets, excluding a single class ω does
not change the distribution of x. This allows us to assume the following: p(x|ω̄) =
p(x). In order to use the likelihood ratio, we need the probability density function
of p(x|ω) and p(x|ω̄). In face recognition, a Gaussian distribution is often assumed
to model faces. The multivariate Gaussian distribution is expressed by

p(x) =
1√

(2π)d|Σ|
exp

(
− (x− x̄)TΣ−1(x− x̄)

2

) �� ��2.14

where d is the dimensionality of the feature vector. The log likelihood of Equation
2.13 will then result in:

lnL(x) = ln p(x|ω)− ln p(x|ω̄)

= −1
2
(

ln |Σw|+ (x− x̄c)TΣ−1
w (x− x̄c)

)
+

1
2
(

ln |Σt|+ (x− x̄)TΣ−1
t (x− x̄)

)
=

1
2
(
(x− x̄c)TΣ−1

w (x− x̄c) + (x− x̄)TΣ−1
t (x− x̄)

)
+

1
2

(ln |Σw|+ ln |Σt|)
�� ��2.15

where x̄c is the mean of the user c, x̄ is the overall mean, Σw is the within
covariance matrix and Σt is the total covariance matrix. The likelihood ratio is
normally applied after dimensionality reduction, because the covariance matrices
are often singular and to reduce computational costs. In this case, we first perform
a reduction using PCA, this also allows us to whiten the total covariance matrix,
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which becomes an identity matrix in reduced face space, see [126]. Then, the LDA
transformation is performed, where we used the total covariance matrix instead of
using the between covariance matrix to maximize Equation 2.12. After dimension
reduction using subsequently PCA and LDA, we perform the log likelihood ratio
(Equation 2.15) on the reduced feature vectors.

2.5.1.5 Other Subspace methods

In the previous sections, we have introduced some subspace methods which we
also use in our research to perform face recognition. In the literature, there are
however more subspace methods for face recognition. This section will shortly dis-
cuss some other well-known subspace methods, namely Independent Component
Analysis (ICA), Kernal-PCA and Kernel-LDA.
Independent Component Analysis [36] is very similar to PCA, but where PCA
minimizes only the second-order dependencies, ICA also minimizes higher-order
dependencies, finding components that are non-Gaussian. Although this dimen-
sion reduction method finds a linear projection, it has a different outcome com-
pared to PCA. In [13], ICA is first used for face recogntion, where ICA originates
from solving the blind source separation problem, decomposing the input signal x
into a linear combination of independent source signals.
Kernel Principal Component Analysis (KPCA) [103] is a nonlinear generalization
of PCA, allowing us to model higher order correlations between the input vec-
tors. This is achieved by using the same kernel trick [4] as is used for Support
Vector Machines, projecting the feature to a higher dimensional nonlinear space.
In the linear space, the kernel function is the inner product between two vectors,
replacing this function by another kernel function allowing us to make a non-linear
projection. Two kernel functions which are often used to replace the linear kernel
are the polynomial and Gaussian kernel functions. A similar strategy can be ap-
plied on the LDA scheme, which results in KLDA.

2.5.2 Face Recognition using Local Features

Another way of performing face recognition is to separate faces based on local
features. In many cases, individuals have distinct noses, mouths or eyes allowing
us to match only a part of the face. Other features like moles, scars or freckles can
also be used to compare different persons with each other. The holistic registration
methods, however, are usually not able to model these details. For this reason,
we use local features descriptors like the Haar features, Gabor wavelets or Local
Binary Patterns (LBP).

2.5.2.1 Elastic Bunch Graphs

To perform face recognition based on local features, a good registration is necessary
to ensure that similar features are compared. In Section 2.3.3, we already discussed
the Elastic Bunch Graphs [133] for registration, locating different facial features.
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The Gabor Jets and the Bunch Graph can also be used in face recognition. Gabor
Jets are powerful features which record the details in a face image on different
scales. Besides using the local information, global information can be obtained by
comparing the behaviour of the obtained Bunch Graphs. In [133], a comparison
is performed on the similarities of the Gabor Jets, by a simple summation on
the outcome of all visible Gabor Jets. A schematic representation of holistic face
recognition versus Elastic Bunch Graphs is given in Figure 2.12.

(a) (b) (c)

Figure 2.12: Schematic representation of the different feature selections

and their importance - (a) depicts Holistic face recognition, (b) shows the feature

selection of Elastic Bunch Graphs, (c) are differently weighted feature selected by

Adaboost

2.5.2.2 Adaboost using Local Features

Another local feature approach is based on the Adaboost framework already men-
tioned in Section 2.2.3. This section contains a part of [29], where we have in-
vestigated this framework for face recognition. Several other papers [29; 51; 67;
136; 137; 138] also applied the boosting framework on the problem of face recog-
nition. In these papers, various kinds of simple features like Haar-like features,
Gabor wavelets or Local Binary Patterns (LBP) are used. Adaboost is the ma-
chine learning algorithm, which is used to combine features into a strong classifier.
In the boosting framework, we train a face similarity function which determines
if two faces belong to the same person or to different persons. The face similarity
function is given here:

F (I1, I2) =
T∑
t=1

ft(I1, I2)
�� ��2.18

In this equation, I1 and I2 are the face images which are compared to see
if they belong to the same person. The function ft represents a weak classifier
used by Adaboost. The final classifier is a weighted sum over all the selected
weak classifiers. A weak classifier fj is given below, where α and β are given by
Adaboost.
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• Given examples (x1, y1), ..., (xN , yN ) where N = A + B. A is the
number of examples with yi = +1 and B is the number of examples
with yi = −1

• w1,i = 1
2A for those examples with yi = +1 and w1,i = 1

2B for
those examples with yi = −1

• For t = 1, ..., T

- Normalize the weights, wt,i = wt,i∑N
k=1 wt,i

- For each φj find the φj which minimizes the error, εj , in
Equation 2.22

- Choose α and β according to Equations 2.20 and 2.21

- Update the weights:

wt+1,i = wt,ie
−ft(xi)yi

�� ��2.16

• The final strong classifier is:

F (x) =
T∑
t=1

ft(x)
�� ��2.17

Figure 2.13: Adaboost algorithm

fj(I1, I2) =
{
α if |φj(I1, I2)| < tj
β otherwise

�� ��2.19

In this formula, φj is the feature output for the given image pair and tj is the
feature threshold. This means that for every feature φj , we first determine the
optimal threshold tj , by minimizing the weighted training error, Equation 2.22. α
and β are given in Equations 2.20 and 2.21.

α =
1
2

log(

∑
i:yi=+1∧φj(xi)<tj

wi∑
i:yi=−1∧φj(xi)<tj

wi
)

�� ��2.20

β =
1
2

log(

∑
i:yi=+1∧φj(xi)≥tj wi∑
i:yi=−1∧φj(xi)≥tj wi

)
�� ��2.21

To each example xi = (Ii1, I
i
2), a label yi ∈ {+1,−1} and a weight wi are

assigned.
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εj =
∑

i:yi=+1∧φj(xi)≥tj

wi +
∑

i:yi=−1∧φj(xi)<tj

wi
�� ��2.22

The goal of Adaboost is to select the weak classifiers which minimize the clas-
sification error εj . The training samples that are incorrectly classified by the
selected weak classifiers get more weight. This makes it more important for the
next weak classifier to classify these samples correctly. A weighted combination
of selected weak classifiers results into a strong classifier, as shown in Figure 2.13
A schematic representation of the different feature selection strategies is given in
Figure 2.12. The holistic face recognition algorithms usually select their features
from an evenly weighted grid. Elastic Bunch Graph finds Gabor Jets on positions
defined by the user, while Adaboost selects the features automatically and gives
larger weight to the more important features for classification.
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Part I
R E S O L U T I O N

One of the most important characteristics of camera surveillance is the relatively
low resolution of faces in the recordings. For this reason, the following specific
research question is asked: What is the effect of low resolution on different compo-
nents (Face Detection, Face Registration, Face Intensity Normalization and Face
Comparison) of the face recognition system? The low resolution of facial images
can have an impact on the performance of the various components. For this reason,
we decided to investigate the effects of resolution on different components. Some
research is already presented in other publications, but this research is limited to
the face comparison component. Here, we have looked beyond the face comparison
component and have also taken into account the other components. This part also
gives an answer to the research question: What is the effect of illumination on the
different components of the face recognition system? This question is answered
through the use of two datasets. The first dataset contains face images recorded
under controlled illumination conditions (High Quality) and the second dataset,
face images recorded under uncontrolled illumination conditions (Low Quality).
This allows us to investigate the impact of the illumination on the face recognition
system from these experiments. This part contains one chapter, which is published
in [21].
As already discussed in Chapter 2, our face recognition system is divided into four
components. In order to perform this research, we decided to use the face recog-
nition system developed in our group. For this system, we discussed the effects on
the different tasks:

• Face Detection Component: This is performed using the framework of
Viola-Jones [127]. For this framework and most other face detection meth-
ods, there is a certain theoretical minimum resolution of around 20 × 20
pixels, which is similar to the input of the training images. Performing face
detection on lower resolution is not possible.
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• Face Registration Component: The face registration is performed by
finding landmarks using MLLL and BILBO [15; 18]. This registration method
is able to find landmarks on relatively low resolutions. An important issue
however is how accurately these landmarks are found. The accuracy of reg-
istration has effect on the recognition results.

• Face Intensity Normalization Component: Although more advanced
face normalization methods require a minimum resolution to function prop-
erly, in our early face recognition system, we used a simple method to normal-
ize the energy in the image. This method is not sensitive to face resolution
differences.

• Face Comparison Component: The face comparison is performed using
the log likelihood classifier, described in [126]. In the literature, some pub-
lications claimed that reasonable results could be reached using much lower
resolutions. We have investigated these claims also in combination with the
other components of a face recognition system.

The following chapter is published in [21]. We have focussed especially on the face
registration and recognition components, because these components of the face
recognition system appear most sensitive to low resolutions of facial images.
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3
T H E E F F E C T O F I M AG E R E S O L U T I O N O N T H E
P E R FO R M A N C E O F A FAC E R E C O G N I T I O N S Y S T E M

3.1 Introduction

In video surveillance applications it is often difficult to obtain good quality record-
ings of the faces of the observed individuals. One important factor determining the
quality of the recordings is the resolution of the images, which is often much lower
than the resolutions typically used in face recognition. Therefore, we decided to
investigate the lowest resolution at which a face recognition system still can achieve
acceptable performance. In a face recognition system several processing steps are
needed to recognize a person’s face. Here, we investigate the sensitivity of the
recognition part and the registration part to the image resolution.
Currently available face recognition systems usually require face images with more
than 50 pixels between the eyes. In the literature several papers can be found which
use much lower resolutions. Zhao et al[141] use a combination of PCA and LDA
for face recognition on a resolution of 24×21 pixels and claim that their approach
will even give good results on 19 × 17 pixels. Kukharev et al[70] report that the
images should be larger than 28×23 pixels using PCA and LDA. Wang et al [129]
investigate the effects of resolution on face recognition and conclude that results
improve until a resolution of 64 × 48 pixels and remain constant for higher res-
olutions using both PCA and a combination of PCA and LDA. In [42], Czyz et

41



3. THE EFFECT OF IMAGE RESOLUTION ON THE PERFORMANCE
OF A FACE RECOGNITION SYSTEM

al mention that results only slightly decrease using face images of 16× 16 pixels.
Ekenel et al [45] investigate the frequency subbands that perform best. By first
low pass filtering and subsequently downsampling, their results of PCA, ICA1 and
ICA2 hardly get worse on face images with resolutions down to 16× 16 pixels.
Other papers investigate the enhancement of the resolution of images using face
hallucinating or super-resolution [9],[10]. This paper might give an indication to
which resolution the image must be enhanced for reliable face recognition. In [9]
it is suggested that the resolution required to find landmarks should probably be
higher than the resolution used for performing face recognition. In [9] it is also
noticed that not only face recognition depends on resolution but also the registra-
tion, which in many cases relies on finding facial landmarks.
The papers found in the literature only mention face recognition as a function of
image resolution, while we also investigate the face registration as a function of
image resolution. In comparison to other papers we use a larger dataset contain-
ing 3699 face image. While in [129] very limited research is done in the choice of
the number of PCA/LDA components, we do more elaborate research into this
subject.
This chapter is organized as follows. In section 2 we explain how we generate face
images with different resolutions. In section 3 the methods we use for face reg-
istration and recognition are described. In section 4 the experiments and results
are given on different resolutions. Finally, in section 5 conclusions are presented.

128 x 128 64 x 64 32 x 32 16 x 16 8 x 8

Figure 3.1: Different resolutions face images - The face images above are for

the registration and below are for recognition

3.2 Face Image Resolution

In this chapter, we investigate the face registration and recognition as a function
of the image resolution. Instead of taking images from faces which have different
distances to the camera, we have tried to simulate the effect of lowering the reso-
lution. By using simple downsampling or taking the mean pixel value, the image
will still contain high frequency components. To simulate the effect of the camera
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lens we used a Gaussian low pass filter with σ = 0.375, followed by downsampling
the image with a decimation factor of 2 in both dimensions . This approach is
similar to the Gaussian pyramid used in [129] and [9]. In our research we create
the following resolutions: 128 × 128, 96 × 96, 64 × 64, 48 × 48, 32 × 32, 24 × 24,
16 × 16, 12 × 12 and 8 × 8. Since cutting out the region of interest (ROI) and
finding the landmarks in the lowest resolution would lead to serious quantisation
errors, we decided to upscale all images to the same resolution. After downscaling,
we scaled the image up to 256 × 256 for face registration and 128 × 128 for face
recognition using a bilinear interpolation. The results can be seen in Figure 3.1.

3.3 Face Recognition System

In this section the different steps of our face recognition algorithm are discussed.
The following steps are performed in our system: face detection, registration, fea-
ture extraction and classification, the latter two are taken together as ’recognition’.

3.3.1 Face Detection

For face detection we used the OpenCV implementation [61] of the face detection
algorithm first proposed by Viola and Jones [127]. The region found by this
algorithm is then used in our face registration algorithm. We did not investigate
the sensitivity to resolution of the face detection algorithm in this chapter.

3.3.2 Face Registration and Normalization

The methods for locating (MLLL:Most Likely Landmark Locator) and correcting
(BILBO) the landmarks are published in [15; 18] and summarized below. Based
on the corrected landmarks the image is aligned, the ROI is determined and the
face image is normalized.

3.3.2.1 MLLL

This algorithm searches for landmarks, which are typical facial features, easily
distinguishable by a human observer, in the region given by the face detection
algorithm. In our case we search for 17 landmarks, see Figure 2.8. The algorithm
searches in positions around the mean location of a landmark in the detection
region. The landmark is found at the location where the likelihood ratio Lu,v is
maximum. The likilihood ratio is given by:

Lu,v =
p(xu,v|L)
p(xu,v|L)

,
�� ��3.1

Here the vector xu,v contains the gray-levels of a subimage at the location (u, v).
The parameters of the probability densities p(xu,v|L) and p(xu,v|L) are respectively
learnt from examples of manually labelled landmarks and non-landmarks.
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3.3.2.2 BILBO

BILBO is used to correct the outliers produced by the MLLL algorithm. The land-
marks which have been found by MLLL are put into a vector s, which we call the
shape. The shape s is projected onto a subspace of trained correct shapes, result-
ing in a modified shape s′. The landmark positions which significantly changed in
s′ will be corrected. The complete method is described in [18]. We use the same
parameters as can be found in [18] for our experiments.

3.3.2.3 Face Alignment

The face images are aligned using a rigid transformation based on the landmarks

3.3.2.4 Face Normalization

We remove background and hair by taking an ROI as can be seen at the bottom
row of Figure 3.1 and then we normalize the energy of the image inside the ROI.

3.3.3 Face Recognition

For face recognition we do feature reduction by subsequently performing PCA
[123] and LDA [16]. We use the algorithm proposed in [126] which uses the log-
likelihood ratio to classify face images. For each class i the similarity score S is
calculated by:

Sy,i = −(y − µW,i)TΣ−1
W (y − µW,i)

+yTΣ−1
T y − log |ΣW |+ log |ΣT |

�� ��3.2

Here y is a vector which is a representation of the face image after feature
reduction, ΣT is the total covariance matrix, ΣW is the within class covariance
matrix and µW,i is the class average.

3.4 Experiments and Results

3.4.1 Experimental Setup

In our experiments we use three datasets, namely the BioID [60], the high-quality
FRCG and the low-quality FRGC [83]. The BioID dataset consists of 1521 images
of frontal faces of 23 persons, where we use 17 landmarks which are manually
labelled in this database. From FRGC version 1, we used 3699 images taken under
controlled conditions which is the high-quality FRGC dataset and 1803 images
taken under uncontrolled conditions which is the low-quality FRGC dataset, the
FRGC version 1 consists of 271 individuals. In our experiments we use the regions
found by the face detection algorithm. In the framework of this research we are
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not interested in the performance of the face detection algorithm. Therefore,
respectively 73 and 84 samples are removed from the high- and low-quality dataset
in which the face is not correctly detected.
For training the landmark finder we use the BioID database [60]. To train MLLL,
the positive examples are cut out of every image in the dataset. For every positive
example 10 negative examples are taken around that facial landmark. The BILBO
algorithm is trained on the shapes of all 1521 faces in the BioID database. To
verify the results of the registration we use the high-quality FRCG and the low-
quality FRGC, where we search for landmarks in the region determined by the
face detection algorithm.
The face recognition is performed on the low- and high-quality FRGC datasets.
The datasets are randomly split into two subsets, each consisting of approximately
half of the images of each person. One subset is used for training and the other for
testing. We train and test the face recognition algorithm on the same resolution.
The same holds for other parameters, if manual landmarks are used for training
then they are also used for testing. The results of the face recognition are measured
in Equal Error Rate (EER), at the point of operation where False Accept Rate
(FAR) is equal to the False Reject Rate (FRR). To get more accurate results, we
repeat the experiments 20 times, randomly splitting the datasets so other subsets
are used in the training and test set. The EER in our case is calculated from the
total set of matching and non-matching scores of all experiments [17].

3.4.2 Experiments

We conducted several experiments, investigating parts of the system and the entire
system.

3.4.2.1 Face Recognition

In Experiment 1 we use manual landmarks provided with the dataset, to avoid
the effects of incorrect registration. By doing this experiment we can determine
a minimum resolution which still gives good results and we can also verify if
the claims made in the literature are valid. We also look at the effect of the
components of PCA and LDA under various resolutions. Our hypothesis is that
adding more dimensionality will mainly have a positive effect on results of the
high resolution images, because then more discriminating details of the face can
be used in classification.

3.4.2.2 Face Registration

In Experiment 2 we investigate the results of our landmark finder under different
resolutions. Our first hypothesis is that the resolution needed for accurate face
registration is higher than for face recognition. Our second hypothesis is that at a
certain test resolution the landmark finder trained at the same resolution gives the
best results. We first compare the automatically found landmarks directly with
the manually labelled landmarks. We perform some experiments by training and
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testing the landmark finder on different resolutions. Finally we investigate the
effect of face registration on the face recognition by performing registration on all
resolutions, while doing the recognition on the highest resolution.

3.4.2.3 Face Registration and Recognition

To study the effect of resolution on the face registration and face recognition we
use in Experiment 3 the automatically found landmarks to register the face images
and then perform the recognition. The results of the registration and recognition
on the same resolution are calculated to determine the effect of resolution on the
overall system.

3.4.2.4 Face Recognition using erroneous landmarks

Because we only use one landmark finding technique, we decided to investigate
what will happen at different resolutions if registration errors are made. Our
landmark finding algorithm may perform optimal for a certain resolution, but that
doesn’t mean other algorithms will. This experiment allows us to predict the EER
of face recognition algorithm based on the RMS error made by the registration.
In the next section we present the details and the results of the experiments.
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Figure 3.2: Results in Face Recognition at different resolutions - Face

recognition performed at different resolutions with manual landmarks for registra-

tion

3.4.3 Results

3.4.3.1 Face Recognition (Experiment 1)

We first perform experiments using the manual labelling given by the FRGC
dataset. The EER is calculated for every resolution on the low- and high-quality
FRGC database and is shown in Figure 3.2, where this is done for the low- and
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high-quality FRGC database. The EERs remain almost constant downto a res-
olution of 32 × 32 pixels, below this resolution the EER increases rapidly. This
seems to be in accordance with other papers where still good results are mentioned
on low resolution face images. Our results on face recognition show that training
and testing on low resolutions still give good results. This also means that if the
lowest resolution of the face images for a certain system is given, training on this
resolution gives good results for all the above resolutions downto 32 × 32 pixels.
For these experiments on the high- and low quality FRGC we use respectively 150
and 90 PCA dimensions and 50 LDA dimensions.
To investigate the influence of the dimensionality at various resolutions, two other
experiments are performed. In the first experiment we increase the number of PCA
components beginning with 50 PCA components with steps of 20, and we use 50
LDA components (Figure 3.3). In the second experiment we use 270 PCA com-
ponents for high quality FRGC and 110 PCA components for low quality FRGC
and we increase the number of LDA components beginning with 10 components
using steps of 20 (see Figure 3.4). These experiments are done on both FRGC
datasets for the resolutions 128 × 128, 64 × 64, 32 × 32 and 16 × 16. Figure 3.3
and 3.4 show that the results on the resolutions 64× 64 and 128× 128 are almost
the same and that the results for 32 × 32 are slightly worse. Using more than
90 PCA components on the high quality FRGC will give better results for high
resolutions, beyond that the results seem to remain stable on this dataset. On
the low quality FRGC dataset using above 110 PCA components will worsen the
results. Using more LDA components than the 50 components we already use in
the first experiment also seems to worsen the results. In most cases around 30
LDA components seems to be the optimal choice. Figure 3.3 and 3.4 also show
that the number of components depends more on the database that is used than
on the different resolutions.
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Figure 3.3: Results in Face Recognition with using different PCA com-

ponents - EER as a function of the number of PCA components while using 50

LDA components
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Figure 3.4: Results in Face Recognition with using different LDA com-

ponents - EER as a function of the number of LDA components while using for

the high- and low-quality FRGC respectively 270 and 110 PCA components

3.4.3.2 Face Registration (Experiment 2)

In this experiment we search for the location of the landmarks in the different
resolution face images. To measure the performance of the landmark finding we
use the RMS error which compares manually labelled landmarks with the auto-
matically found landmarks after the alignment. The exact calculation of the RMS
error is given below, because a straightforward comparison cannot be used due to
the difference in scale in the face images.

1. Translate, scale and rotate the groundtruth data so that the eye landmarks
are on a horizontal line at a 100-pixels distance form each other.

2. Align the shape found to the corresponding groundtruth shape.

3. Calculate the Euclidian distance between each landmark and its groundtruth
equivalent.

4. Remove the bias caused by the different labelling policies in the databases,
i.e. tip of the nose (BioID) versus a point between the nostrils (FRGC).

5. Calculate the RMS value of the remaining difference between the found shape
and the groundtruth shape, which is now given as a percentage of the inter-
eye distance.

In the FRGC database the center of the mouth is labelled, while our methods
label the mouth corners. Therefore, prior to calculating the error an estimate of
the center of the mouth was obtained by computing the midpoint of the mouth
corners. During our experiment the training of MLLL is done using the highest
resolution images of the BIOID and for testing we used the high-quality FRGC
database. The results are shown in Table 3.1. Because the resolution of 32 × 32
gives the best results, we have studied the effect of training on other resolutions.
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Resolution right eye left eye nose mouth

128× 128 3.0 3.2 4.4 2.8

64× 64 2.6 2.7 3.7 2.5

32× 32 2.1 2.2 3.2 2.2

16× 16 3.1 3.2 4.6 2.9

8× 8 6.4 6.8 8.2 5.6

Table 3.1: RMS error on High Quality FRGC for different facial features

The results of these experiments are shown in Table 3.2 and 3.3 on both the
high- and low-quality FRGC, the values in the table are the mean of the RMS
errors of the eyes, nose and mouth. Tables 3.2 and 3.3 show that training on the
highest resolution still gives overall better results than training on lower resolu-
tions. Tables 3.2 and 3.3 also show that the results of training on 128× 128 pixels
and the highest resolution are almost the same. The reason is that the resolution
of the face images of this dataset is around 150 × 150 pixels and thus close to
128 × 128 pixels. It seems that MLLL performs best at the resolution of 32 × 32
pixels, nearly for almost all training resolutions.

Test Resolution Highest 128× 128 64× 64 32× 32

128× 128 3.4 3.6 5.1 7.7

64× 64 2.9 3.0 4.0 6.9

32× 32 2.4 2.5 2.7 4.2

16× 16 3.5 3.5 3.4 3.4

8× 8 6.7 6.5 6.8 5.9

Table 3.2: RMS error on High Quality FRGC trained on different resolutions

(columns)

We investigate the effects of this registration methode on the face recognition,
after performing face alignment based on the landmarks obtained by the landmark
finder trained on the highest resolution. Because here we are only interested
in the performance of the registration under different resolutions, we performed
landmark finding under the different resolution, while doing face recognition under
the highest resolution of 128 × 128. The results are shown in Figure 3.5 by the
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Test Resolution Highest 128× 128 64× 64 32× 32

128× 128 4.3 4.4 4.7 6.9

64× 64 4.1 4.2 4.4 6.0

32× 32 4.0 4.2 4.0 4.5

16× 16 4.3 4.4 4.2 4.3

8× 8 5.7 5.6 5.5 5.2

Table 3.3: RMS error on Low Quality FRGC trained on different resolutions

(columns)

dotted line. Optimal results in EER are also reached at 32× 32. It appears that
the RMS error gives a good indication of the EER, because the RMS error and
EER follow the same trend.

3.4.3.3 Face Recognition and Registration (Experiment 3)

In this experiment we investigate the effects of the entire system under different
resolutions. We first perform face registration and then the face recognition on
the same resolution. The results of face registration and recognition under various
resolutions are shown in EER in Figure 3.5 by the dashed line. The other lines in
Figure 3.5 are the results of only face recognition using the manual landmarks (solid
line), and the results of only face registration doing face recognition on resolution
of 128 × 128 pixels (dotted line). Figure 3.5 shows that our landmark finding
algorithms works best at 32 × 32 and also for the whole face recognition system
the performance is best for this resolution. For resolutions above 32×32 pixels the
influence of the registration on the EER is significant, while for lower resolutions
the EER is dominated by the poor performance of the face recognition. The
difference obtained in EER between manual and automatic landmarks is rather
large, so there is much to gain by improving the face registration.

3.4.3.4 Face Recognition by using erroneous landmarks (Experiment
4)

In this experiment we added Gaussian noise to the manually labelled landmarks
and, based upon these landmarks, the face registration and recognition is per-
formed. For the noisy landmarks we calculated the RMS error of the landmarks
and the EER of the face recognition algorithm. This experiment is performed on
both FRGC datasets and the results are shown in Figure 3.6. It shows that the
EERs of resolutions 32× 32 up to 128× 128 remain almost the same for all RMS
errors. Results in RMS error and corresponding EER of our face registration and
recognition for the resolutions 16×16, 32×32, 64×64 and 128×128 are shown as
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Figure 3.5: Results in Face Registration and Recognition at different

resolutions - 1. manual landmarks (solid), 2. landmark finding on all resolution

and recognition at 128 × 128 (dotted), 3. landmark finding and recognition on all

resolutons (dashed)

the large symbols (respectively, plus, diamonds, cross and dot) in the Figure 3.6.
These results correspond well with the erroneous landmark results, which indicates
that with this graph we can roughly predict the results on face recognition if we
know the RMS error of the registration.
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Figure 3.6: Results in Face Recognition by simulating errors in Face

Registration - EER under different RMS errors using erroneous landmarks, the

large symbols are the locations using automatically obtained landmarks

3.5 Conclusion

In this chapter, we investigate the effect of image resolution on the result of a face
recognition system. The results confirm that face recognition algorithms using a
PCA/LDA-based system are not very sensitive to resolution and still give good
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results at resolutions as low as 32× 32 pixels. This also means training on 32× 32
pixels will give good results if the face recognition system has to deal with various
resolutions above 32 × 32 pixels. We also show that the optimal choice for the
number of PCA and LDA components depends on the resolution, but much more
on the dataset that is used. Increasing the amount of PCA and LDA components
can help in cases where the resolution and quality of the images is high, however
at the risk of overtraining.
We have also investigated the relation between face registration and resolution.
Our registration algorithm performs best on the upscaled image with a resolution
of 32×32 pixels. The landmark finding was not improved by training on the same
resolution as used for testing. Other registration methods may behave differently
under various resolutions. We also show that there is much to be gained by
accurate registration. This can be seen in the difference in results of the face
recognition between manually and automatically found landmarks. This confirms
that accurate registration is of vital importance for face recognition. Our entire
face recognition system works best at the resolution of 32× 32 pixels.
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Conclusion Part I

In camera surveillance, the resolution of the faces in the images is usually low.
For this reason, we would like to know the effect of low resolution on the different
components of the face recognition system. Chapter 3 shows that the recognition
results of the subspace based face recognition methods are hardly effected by the
resolution until around 32×32 pixels. Our face registration method is also able to
perform reasonably at this resolution. Although camera surveillance footage often
contains faces with lower resolution than 32×32 pixels, the use of these face images
becomes questionable because humans can not verify the results obtained using
these images either. With techniques like face hallucinating or super-resolution,
we might be able to further enhance the image. We observed however, that a
minimum resolution of around 32 × 32 pixels is usually achieved in the scenarios
(Section 1.1.4) on which we focussed our attention. For this reason, we decided to
focus our efforts on other problems already visible in the experiment performed in
Chapter 3.
The experiments in Chapter 3 already show two other important issues for the
camera surveillance applications. The first issue is the difference between registra-
tion using manually labelled landmarks and the automatically found landmarks.
This difference is even larger for the Low Quality (uncontrolled conditions) images.
The last experiment, which simulates erroneous registration, indicates that much
can be gained by improving the registration. The second issue is the difference
between “High Quality” (controlled) and “Low Quality” (uncontrolled), which an-
swers the question: What is the effect of illumination on the different components
of the face recognition system? We observe that for uncontrolled conditions, face
recognition methods perform far worse than for controlled conditions. The face
recognition component is most sensitive to varying illumination conditions, mak-
ing face intensity normalization methods necessary to improve the performance.
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Part II
R E G I S T R AT I O N

The second specific research question is: Which measures can be taken to improve
the face recognition system for low resolution facial images? In the previous part,
we showed that there still is a large difference between manual and automatic
face registration. In this part, we focus on improving face registration for camera
surveillance. In order to improve face registration, the number of landmarks is
usually increased. This approach fails for low resolution faces obtained in camera
surveillance. The reason is that the facial images contain not enough information
to correctly locate multiple landmarks. In order to solve this problem, we decided
to find the registration parameters based on the entire image. In order to find the
best registration parameters, we maximize the similarity score from face recogni-
tion methods by varying the registration parameters.
This part contains two chapters about face registration:

• Chapter 4 is based on papers [22] and [26]. In this chapter, we perform face
registration by maximizing the scores of several face recognition methods.
These face recognition methods are all holistic face recognition methods.
We show that our registration method on high resolutions outperforms the
landmark based registration. We observe that on lower resolution, we still
achieve similar results as landmark based registration on high resolutions.
We discovered that our registration method sometimes finds a local instead of
a global maximum score for the registration and we developed better search
strategies to overcome this problem.
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• Chapter 5 is based on [24]. In Chapter 4, we found the registration by max-
imizing the similarity scores from face recognition methods. In this chapter,
we used a matching criterion that includes the probability that a face might
be misaligned, instead of using the output of the face recognition methods
which only measures similarity between faces of different individuals. A
second search method is also introduced and more robust features for reg-
istration are used. To evaluate the new improvements, a face recognition
experiment is performed on the FRGCv2 database. We show clear improve-
ments in comparison with our earlier work and landmark based methods on
high resolution images. Our face registration method performs well on low
resolution facial images.
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4
AU T O M AT I C FAC E A L I G N M E N T B Y M A X I M I Z I N G T H E
S I M I L A R I T Y S C O R E

4.1 Introduction

Several papers have shown that correct registration is essential for good face recog-
nition performance [95],[17]. The performance of popular face recognition algo-
rithms, for instance PCA, LDA and ICA, depend on accurate face registration.
We propose a new method for face registration which searches for the optimal
face alignment by maximizing the score of a face recognition algorithm. Our new
method outperforms the landmarks methods described in [18]. In this chapter,
we investigate the practical usability of the new face registration method for face
verification.
In practice, we need to locate the face region using a face detection algorithm.
Using this region, we register the face image to a user template in the database
and then recognize the face. Our face registration algorithm, first described in
[22], finds an optimal face alignment from the located face region. In this chapter,
we investigate different practical aspects of our face registration method. We test
our face registration method with different face classifiers as evaluation criteria in
the search procedure. We test our method under circumstances where lighting is
controlled and uncontrolled, and we also lower the resolution of the face images.
We investigate if our method works with automatically registered training images,
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so it becomes fully automatic. Finally, we look at the mistakes of our registration
method and introduce some solutions to overcome these problems.
In the literature, face registration is usually achieved by finding landmarks in a face
image. An approach which is similar to our face registration algorithm is described
in [68] and [79], which uses a form of robust correlation to find the alignment to
a user template. Recently, Wang et al [131] improve the face identification on the
the FERET database by calculating the similarity score of different alignments
and selecting the maximal score. The main differences with their approach are the
assumption of a face identification problem and using the manually labelled eye
coordinates as start points.
In section 4.2 we firstly explain our method. Secondly, we specify our search pro-
cedure and finally we describe the face recognition algorithms. In section 4.3, we
describe the experimental setup we used to evaluate our method. Section 4.4 de-
scribes the various experiments carried out using our registration method. The
final section gives a conclusion about this face registration method.

4.2 Matching Score based Face Registration

We have developed a new face registration method, namely Matching Score based
Face Registration (MSFR). This method searches for the optimal alignment be-
tween the probe image and a user template in the database. To evaluate the
alignment, we use the output of a face classifier. This output is also called the
matching score in the case of a genuine user or the similarity score in the case
of a unknown user. We assume that the similarity score becomes better if the
alignment of face image to the user template improves. To verify this assumption,
we have performed several experiments in which we vary one of the registration
parameters (translation, rotation and scale) of a manually registered face image.
The resulting similarity score given in Figure 4.1, where four graphs are shown
containing the matching score for a single face image while varying one of the reg-
istration parameters. These parameters are varied relative to a registration based
on manually labelled landmarks. In the graphs this corresponds with scale = 1,
angle = 0 and translation in x- and y-direction = 0. Figure 4.1 shows that the
manual registration is rather good although the matching score can be improve by
using a slightly different translation in x-direction. Our second assumption is that
the optimal alignment of the genuine user’s face image gives a better similarity
score than the optimal alignment of an imposter’s face image.

4.2.1 Face Registration

Based on the assumptions described above, we have developed the following method.
The region of the face is found by a face detection algorithm, in our case the face
detector first described by Viola and Jones [127]. Using an affine transformation
Tθ on the pixel p of the probe image Ip, given by the region found by the face
detection algorithm, we vary the multiple registration parameters ~θ searching for
the optimal alignment. The geometric transformation function is :
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Figure 4.1: Influence on Matching Score when varying the registration

parameters - Best Matching Score is achieve near manual registration, maximizing

the Matching Score will achieve good registration results

Tθ(x, y) = (θ1cosθ2x− θ1sinθ2y + θ3,

θ1cosθ2x+ θ1sinθ2y + θ4)
�� ��4.1

In the transformed image Ip(Tθ(p)), the pixel values are calculated using bilin-
ear interpolation. The optimal alignment parameters to person i in the database
are given by:

θmax = arg max
θ∈Θ

S(Ip(Tθ(p)), i)
�� ��4.2

Of course, the similarity score S(Ip(Tθmax(p)), i) can also be used to verify the
person’s identity. It is also possible to use one face recognition algorithm to find the
optimal alignment parameters but another face recognition algorithm to classify
the face. A schematic representation of the entire system is given in Figure 4.2.

4.2.2 Search for Maximum Alignment

To search for the maximum similarity score, we use a search algorithm called
the downhill simplex method [81]. This search algorithm finds four parameters ~θ
which maximize the similarity score. The starting point of the search algorithm is
the region given by the face detection algorithm, where θ0 = (1, 0◦, 0, 0). For the
downhill simplex method, we need to determine a simplex (geometrical figure in
N dimensions consisting of N + 1 points). This is created from the starting point
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Search Algorithm Face Alignment Face Recognition

Starting Point

Parameters

Score

Final Point + Score

Figure 4.2: Scheme of matching score face registration - Using a search

algorithm, we estimate the registration parameters, which give the best score as

final point. The starting point is the result obtained from the face detection

parameters and four points for which we varied a single parameter. The other four
points of the simplex are: θ1 = (1.2, 0◦, 0, 0), θ2 = (1, 5◦, 0, 0), θ3 = (1, 0◦, 5, 0)
and θ4 = (1, 0◦, 0, 5). We have also experimented with other simplexes to start
the search algorithm. Details will be given later on in this chapter. We have also
experimented with the search algorithm of Powell-Brent [30],[92], but it performs
worse for this search problem.

4.2.3 Face Recognition Algorithms

Face recognition involves performing several steps to be able to recognize a face
in an image. Using an aligned image Ip(Tθ(p)) given by the search algorithm, we
select a region of interest (ROI) and we normalize the image inside the ROI to
zero mean, unit variance. After that, the pixels in the ROI are vectorized and the
resulting vectors are then used in our face recognition algorithm.
We use four algorithms to calculate the similarity score, these algorithms are based
on PCA [123] some in combination with LDA [16]. In this chapter, we used a fixed
number of PCA and LDA dimensions, 100 and 50 respectively. The first algorithm
is PCA in combination with the Euclidean distance (eucl), where we calculate the
Euclidean distance between the probe image with the template in the database
and use this as similarity score. The second algorithm is PCA in combination with
the Mahalanobis distance (mah), where we use the Mahalanobis distance instead
of the Euclidean distance. In the third algorithm, we perform feature reduction
using PCA and LDA and use the log-likelihood ratio proposed in [126] to calculate
the similarity score. For a certain class i, the similarity score S is calculated by:

Sy,i = −(y − µW,i)TΣ−1
W (y − µW,i)

+yTΣ−1
T y − log |ΣW |+ log |ΣT |

�� ��4.3

Where y is a vector which is a representation of the face image after feature
reduction, ΣT is the total covariance matrix, ΣW is the within class covariance
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matrix and µW,i is the ith class average. The final algorithm uses the numerator
of the likelihood ratio, which is given by:

Sy,i = −(y − µW,i)TΣ−1
W (y − µW,i)− log |ΣW |

The reason behind using only the numerator is that we register to a certain
user template. This means that it is not necessary to maximize with respect to
the background distribution, given by the denominator in the likelihood ratio. We
call this final method the within ratio. This method is only intended for finding
a maximal alignment to a user template and not for face recognition. After the
face registration, a final face verification is always performed using the likelihood
ratio.

4.3 Experimental Setup

In our experiments, we use the Face Recognition Grand Challenge (FRGC) version
1 database [83]. We only used face images in which the face was correctly found
by the face detection algorithm of Viola-Jones [127], because we are not interested
in the mistakes made during face detection. The face images are correctly found
when the eyes, nose and mouth coordinates lie inside the face region and the width
and height of this region are less then four times the distance between the eyes.
The FRGC version 1 database contains 275 individuals, from which we use a set of
3761 face images taken under controlled conditions and a set of 1811 face images
taken under uncontrolled conditions. In our experiments we randomly split these
sets into two subsets, each consisting of approximately half of the images of each
person. One subset is used for training and enrollment and the other is used for
testing. The same random split is used for all experiments.
We compare our face registration method with the best landmark based face reg-
istration methods in [18], namely MLLL + BILBO. The results of the face regis-
tration are measured on the performance in face verification by calculating Equal
Error Rate (EER): this is the point of operation where the False Accept Rate
(FAR) is equal to the False Reject Rate (FRR). To measure the accuracy of reg-
istration we use the RMS error. We calculated the location of the eyes, nose and
mouth in the original image based on the alignment found by MSFR. The RMS
error is then calculated between these positions and the manually labelled land-
marks given by the FRGC database and we normalize to a distance of 100 pixels
between the eyes.

4.4 Experiments

Since our earlier paper [22], we have performed more extensive experiments. We
have done several experiments to gain a better understanding of our method. In
our first experiment we report the results of the different recognition algorithms on
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FRGC FRGC

Conrolled vs Controlled Uncontrolled vs Uncontrolled

Registration EER RMS error RMS error EER RMS error RMS error

Method [%] users impostors [%] users impostors

Manually labelled 0.59 - - 1.7 - -

MLLL+BILBO 3.6 7.9 7.9 9.7 10.2 10.2

PCA eucl 1.8 3.4 9.5 3.2 4.3 10.3

PCA mah 1.3 3.0 5.7 1.5 2.9 4.2

Likelihood ratio 1.01 3.2 9.4 2.3 4.0 7.9

Within ratio 1.07 3.2 8.7 2.1 3.8 7.2

Table 4.1: Results of the face verification using various registration algorithms

the FRGC database. In the second experiment, we use a lower resolution making
the algorithm faster and applicable to video surveillance environments. The third
experiment investigated if this face registration algorithm can be trained on face
images which are registered using automatically obtained landmarks. The final
experiments try to address some failures of the search algorithm by performing
the search several times and adding registration noise to the training data.

4.4.1 Comparison between recognition algorithms

Searching for the best alignment requires a recognition algorithm. In this sec-
tion, we describe our experiments using the various recognition algorithms. We
compare the results with both manually labelled landmarks and automatically ob-
tained landmarks. For our experiment, we use the experimental setup described in
section 4.3. We use face images with a resolution of 128×128 pixels. Training the
face classifier is achieved using a training set which is aligned using the manually
labelled landmarks. Face recognition applied to images registered using MLLL +
BILBO, however, is train also on images which were registered using MLLL +
BILBO [18]. After registering the face, we recognize the registered faces using the
Likelihood ratio classifier.

In Table 4.1, we compare the results of the various registrations in EER and
RMS error. The columns for the EER show that the MSFR outperforms the
landmark registration. By comparing the various classifiers of MSFR, it becomes
clear that the likelihood ratio and the within ratio perform best on the controlled
images of FRGCv1, although the performance of PCA with Mahalanobis distance
is also very good. On the uncontrolled image of FRGCv1, PCA with Mahalanobis
distance performs best, even better than the manually labelled landmarks. In
RMS error, the various MSFR methods are more accurate than MLLL+BILBO
when it comes to registration to the genuine user. If we look at registration
of an imposter, the RMS error of most of the MSFR is higher than the RMS
error of MLLL + BILBO. This does not need to have any effect on the EER,
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because poorly registered images usually do not improve the similarity score. In
the case of PCA with Mahalanobis distance, the RMS error of the impostor is still
lower than that of MLLL+BILBO. Figure 4.3 shows the FAR and FRR curves
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Figure 4.3: Registration Effects on similarity scores - FAR and FRR curves:

the grey line is the Matching Score Face Registration and the black line is the manual

registration

of the manually labelled landmarks and the MSFR with the likelihood ratio on
the controlled images of the FRGC. Both the matching and non-matching scores
increase when using MSFR, which means that for genuine users, better alignments
than manually labelled landmarks can be found using MSFR.

4.4.2 Lowering resolution

In [22] we report that our method takes about 20-30 seconds to register and classify
a face image using an Intel Pentium 2.80 GHz. Currently, it takes about 5-10
seconds on the same computer for a face image of 128 × 128 pixels, because we
optimized some of our source code. In [21] we investigated the effect of the image
resolution on face recognition. It turns out that the EER does not increase much
on face recognition by lowering the resolution to 32 × 32. In practice, we do
not always have high resolutions face images, so we performed a experiment at a
resolution of 32 × 32 pixels, which also leads to a decrease in computation time.
The results of the recognition are stated in Table 4.2 together with the results of
using the normal resolution of 128× 128 pixels.
Although Table 4.2 shows that the EER increases somewhat by using face images

of 32×32 pixels, these results are still acceptable and better than face registration
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FRGC FRGC

Conrolled vs Controlled Uncontrolled vs Uncontrolled

Registration resolution resolution resolution resolution

Methods 128× 128 32× 32 128× 128 32× 32

PCA eucl 1.8 2.4 3.2 5.5

PCA mah 1.3 2.3 1.4 2.8

Likelihood ratio 1.01 1.3 2.3 3.8

Within ratio 1.07 1.7 2.1 3.6

Table 4.2: The EERs by using face images with a resolution of 32× 32

Registration EER [%] EER [%]

Methods manual automatic

PCA eucl 1.8 2.0

PCA mah 1.3 1.5

Likelihood ratio 1.01 1.7

Within ratio 1.07 1.8

Table 4.3: The EERs when the training en enrollment are registered using MLLL

+ BILBO on images from the controlled set of FRGCv1

using MLLL + BILBO. It takes about 2-5 seconds to register and classify a face
image of 32× 32 pixels on a Intel Pentium 2.80 GHz. More improvements in the
operation time of our method can be realised, because we have not payed much
attention to this subject yet.

4.4.3 Training using automatically obtained landmarks

Until now, we have assumed that for training and enrollment of the face registra-
tion we can use a set of manually labelled face images. In practice, this usually
is not the case, especially for the enrollment of a new user. This is the reason
we performed an experiment where we trained and enrolled images which have
been aligned using the landmarks given by MLLL + BILBO. The results of this
experiment are given in Table 4.3. Although the results we report in table 4.3
show increased error rates, the performance is still much better than using MLLL
+ BILBO for face registration. This shows that some small mistakes in the regis-
tration of training set do not have a large influences on recognition results.
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4.4.4 Improving maximization

In this chapter, we already reported a large improvement in the results of face
registration. But after some analysis of our method, we found that a correct
registration is not always found by simply running the downhill simplex search
algorithm. The main reason is that the search algorithm can find a local maximum
far away from the global maximum. In figure 4.4, we show the incorrectly found
registration results by the likelihood ratio classifier. These results can easily be
determined by considering the RMS error of face images. The faces depicted in
figure 4.4 all have a RMS error bigger than 11 pixels, except for the bottom right
face image. The main reason for these errors is that in these cases, the search
algorithm searches in the wrong direction and gets stuck in a local maximum. To

Figure 4.4: Mistakes in Registration - Face images which have been incorrectly

registered, the bottom-right image is an example of a correct alignment

correct these outliers, we have developed two strategies to address this problem.
Firstly, we use the downhill simplex method several times but start with a different
simplex in the search space. Secondly, we change the search space by training on
a database with some registration noise.

4.4.4.1 Using a different start simplex

The first strategy is based on the idea that if we start searching from another side
in the search space, we will probably never come across the same local maximum.
For this experiment, we have defined two new start simplexes; the first simplex
consists of the points: θ0 = (1, 0◦, 0, 0), θ1 = (0.8, 0◦, 0, 0), θ2 = (1,−5◦, 0, 0),
θ3 = (1, 0◦,−5, 0) and θ4 = (1, 0◦, 0,−5), so that we start from the opposite
side of the search space. For the second simplex, we start at the points: θ0 =
(0.9,−2.5◦,−2.5,−2.5), θ1 = (1.1,−2.5◦,−2.5,−2.5), θ1 = (0.9, 2.5◦,−2.5,−2.5),
θ2 = (0.9, 2.5◦,−2.5,−2.5), θ3 = (0.9,−2.5◦,−2.5, 2.5) and θ4 = (0.9,−2.5◦,−2.5, 2.5),
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Registration start start start combining

Methods position 1 position 2 position 3 1,2,3

PCA eucl 1.8 7.4 3.5 3.6

PCA mah 1.3 1.6 5.2 0.64

Likelihood ratio 1.01 2.6 6.7 0.59

Within ratio 1.07 2.4 6.5 0.64

Table 4.4: The EERs when searching from different positions in the search space

on images from the controlled set of FRGCv1

which gives us a search area around the located face region. In Table 4.4 we present
the results of the three different start positions. The EERs 2 and 3 in table 4.4
are the new start positions, while EER 1 gives the start position which has been
used throughout the entire chapter. Also, the results of combining these outcomes
of registration by using the maximum similarity score of the three different start
positions is given in table 4.4, this procedure is done for both genuine users and
impostors. These combinations give results which are similar to registration us-
ing manually labelled landmarks. The EERs of the other start positions are not
particularly good, but using other starting points results in different failures. By
using the similarity score to evaluate the final outcomes of the different starting
points, the local maxima are discarded.

4.4.4.2 Adding noise to train our registration method

The second strategy is based on changing the search space. This is done by adding
Gaussian noise to the manually labelled landmarks of the training examples. By
adding noise to the training, we also hope that we can model the registration error
better. The results of this experiment are given in Table 4.5 where the t is the
standard deviation of the noise in pixels, normalized to 100 pixels between the eyes.
In Table 4.5 we show that by combining the results of adding registration noise
to the training set we reach the same result as with manually labelled landmarks.
Another observation is that by adding a little registration noise to the training,
the EER seems to decrease anyway. This is because a reduction in the number of
outliers. We suspect that the registration noise makes the search space smoother
in the areas further away from the optimal registration. By adding too much noise,
the EER increases. This can be observed for t = 5 in table 4.5.

4.5 Conclusion

We present a system for face registration which uses the output of the face recogni-
tion classifier to find an optimal registration. We search for an optimal registration
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Registration noise combining

Methods t = 0, 1, 2

t 0 1 2 3 4 5

PCA eucl 1.8 1.5 1.5 1.8 1.3 1.5 1.9

PCA mah 1.3 0.91 0.85 0.80 0.69 1.2 0.80

Likelihood ratio 1.01 0.69 0.75 0.91 0.91 1.3 0.59

Within ratio 1.07 0.64 0.75 0.91 0.96 1.2 0.64

Table 4.5: The EERs when adding noise to the registration of the training on

controlled face image of FRGCv1

by varying the face alignment parameters. Our new face registration method per-
forms better than the landmark based methods of [18]. The experiments show that
our method performs well with both face images taken under controlled as well as
uncontrolled conditions. The operating speed of the method has been improved
and we show that lowering the resolution improves the speed even more while still
obtaining good performance. Our face registration method also works with an
automatically registered training set and achieves good results despite registration
errors in the training set. This makes our face registration method very useful in
practise when dealing with a face verification problem. By using multiple searches,
the results of our face registration method are equivalent to the results obtained
with registration using manually labelled landmarks. This kind of performance
has not yet been achieved by any fully automatic face registration method known
to us.
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5
S U B S PAC E - B A S E D H O L I S T I C R E G I S T R AT I O N FO R L OW
R E S O L U T I O N FAC I A L I M AG E S

5.1 Introduction

Face recognition in the context of camera surveillance is still a challenging prob-
lem. For reliable face recognition, it is crucial that an acquired facial image is
registered to a reference coordinate system. Most conventional registration meth-
ods are based on landmarks. To locate these landmarks accurately, high resolution
images are needed. For those methods, it is problematic to register low1 resolution
facial images as obtained in video surveillance. Face registration on low resolution
images is in these cases often omitted and the region found by the face detection is
directly used for face recognition [2; 12]. In our opinion, accurate face registration
can contribute to better recognition performance on low resolution images. There-
fore, we developed a Subspace-based Holistic Registration (SHR) method, which
uses the entire face region to correct for translation, rotation and scale transfor-
mation of the face, which enables us to accurately register low resolution facial
images. The face registration is performed after a frontal face detector, which

1In the Face Recognition Vendor Test [89], low resolution face images are defined to contain

an interocular distance of 75 pixels, we used even lower resolutions with interocular distances of

50 pixels and lower. High resolution face images have an interocular distance of more than 100

pixels
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detects a face at a certain scale and rotation variations, limiting the search for the
final registration parameters.
As already pointed out above, registration methods can be divided into two cat-
egories: landmark-based registration, using landmarks to register the face image,
and holistic registration, using the entire image for registration. Of the latter only
a few methods have been reported.
In the first category, the object detection method of Viola and Jones [127], origi-
nally proposed for face detection, is a popular approach to locating landmarks [32;
34; 41]. The advantages of this method are that it is fast and robust in compar-
ison with other landmark methods. Many papers report good results especially
in uncontrolled scenarios. However, occasionally landmarks are not found by this
method. In [80], a probabilistic approach using Principal Component Analysis
(PCA) is used to locate the landmarks. Subspace methods for facial feature de-
tection are also used in [15; 18; 46]. Some landmarking techniques are not only
based on texture, but also use geometric relations between landmarks, for instance
[6; 98; 108; 133]. These methods usually require more landmarks and high res-
olution facial images. A well-known example of such a method is Elastic Bunch
Graphs [133]. Elastic Bunch Graphs are used to determine the relation between
different landmarks. The relation between the landmarks and the scores of Gabor
Jets are combined to register and recognize the face. Active Shape Models [37] and
Active Appearance Models [38] can also be used to perform a fine registration of a
face, by using both texture and the relation between the landmarks. Both meth-
ods, however, need a good initialization to find an accurate registration, which can
be provided by, for instance, the Viola and Jones landmark finding method.
In the second category of registration, there are correlation-based registration
methods that are invariant to translation. The MACE filter originally described
in [77] and used in face recognition in [100; 102], is invariant for translations. In
[65], a face registration method using super resolution is described that performs
correlation to compare the original image with a reconstructed image obtained us-
ing super resolution, correcting for translation and scale variations. The method
described in [68] and [79] is a correlation based method that finds a rigid transfor-
mation to align the facial images, which is done using robust correlation to a user
template.
Another way of evaluating the registration quality is by using the similarity score
determined by a face recognition algorithm. In [131], the manually labelled eye
coordinates are used as a starting point from which the eye coordinates are varied
to obtain different registrations. The registration that resulted in the best sim-
ilarity score is selected. This experiment was performed using several different
face recognition algorithms. In [115], we performed a similar experiment and in
addition showed that small changes in the registration parameters can have a huge
effect on the similarity scores of face recognition algorithms. In [22] and [26], we
proposed a matching score based face registration approach, which searches for
the optimal alignment by maximizing the similarity score of several holistic face
recognition algorithms, e.g. PCA Mahalanobis distance. In [76], the PCA Ma-
halanobis distance is used to find the registration parameters for low resolution
images using a different search strategy as in [26], where the focus of the paper is
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face hallucination. In [64], this face registration method is extended especially for
the purpose of face hallucination. We performed no experiment using face halluci-
nation, because our focus is on face registration and its effect on the recognition.
In this paper, we extended the work in [22; 26], by developing Subspace-based
Holistic Registration (SHR) method. The novelty of this method is that we use a
probabilistic framework designed to evaluate the registration of faces, instead of
maximizing the score of a face recognition method, which might not be suited for
comparing unregistered face images.

5.2 Face Registration Method

5.2.1 Subspace-based Holistic Registration

Face registration is performed to correct for variations that occur when the face
region is selected from an image. We assume that the face detection obtains
frontal faces from a camera and that we have to correct for in plane rotations of
these faces. The exact positions of the camera and the face are usually unknown,
making a correction for scale and translation necessary as well. A Procrustes
transformation denoted by Tθ corrects for these variations, allowing us to scale by
a factor s, rotate with an angle α and translate over a vector u an image. The
optimal face registration is assumed to be found if there is a maximum similarity
between the transformed input image (probe image) and the gallery images. In
SHR, we try to find the best registration parameters θ = {u, α, s}, by maximizing
a similarity function S(TθH,K|Ω). Here H denotes the probe image, which is
transformed by Tθ, K denotes a registered reference object (gallery image) and Ω
denotes a model of the reference object (faces). The equation for finding the best
registration parameters θ̂ is:

θ̂ = arg max
θ

S(TθH,K|Ω)
�� ��5.1

An important issue is how to measure the similarity between probe and gallery
image. In our previous work, we used similarity scores from well-known face
recognition algorithms for this purpose. However, these scores are usually optimal
for face recognition, measuring the similarity between faces of different individuals
in a face space. In this paper, we argue that the correct quantifier for the face
registration should also include the probability that the face might be misaligned,
measuring also the error outside face space. We thus use the probability that the
aligned image TθH belongs to the object class Ω of the gallery image K. Let V
be an operator that vectorizes the features in H and K using a set of predefined
locations {pn}Nn=1 in the images. We adopt a Gaussian model of which V K is the
mean and ΣΩ the covariance matrix

S(TθH,K|Ω) = N(V TθH|V K,ΣΩ)
�� ��5.2
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Our goal is to optimize S(TθH,K|Ω) as function of the registration parameters θ.
For notational compactness, we define x = V TθH and x̄ = V K and

P (x|Ω) def= N(V TθH|V K,ΣΩ)
�� ��5.3

=
exp

(
− 1

2 (x− x̄)TΣ−1
Ω (x− x̄)

)
(2π)N/2 · |ΣΩ|1/2

�� ��5.4

The training samples x to determine both the mean x̄ and covariance matrix ΣΩ

are correctly aligned images. Notice that K needs to be a registered image in
order to find the registration parameters θ for H. The exact estimation of the
covariance matrix ΣΩ is not possible with a limited number of training samples.
As a consequence, the estimate of ΣΩ is often singular, so that Σ−1

Ω cannot be
computed and even if Σ−1

Ω can be calculated, the results will be inaccurate. Fur-
thermore, the computational costs of evaluating Equation 5.4 are large, due to the
high dimensionality of ΣΩ and x. For these reasons, we use Principal Component
Analysis (PCA) to reduce the dimensionality. We obtain a subspace by solving
the eigenvalue problem:

Λ = ΦTΣΩΦ
�� ��5.5

where Λ are the eigenvalues and Φ are the eigenvectors of the covariance matrix ΣΩ.
We can obtain a reduced feature vector y = ΦT x̃, where x̃ = x− x̄. The principal
subspace F = {Φi}Mi=1, which reduces the feature vector from N to M dimensions,
has an orthogonal complement F̄ = {Φi}Ni=M+1, which contains the variations that
are not modelled by PCA. Using only similarities in the principal subspace as in our
previous work [26], results in the Mahalanobis distance. However, if we optimize
the alignment only for the principal subspace F , we might walk further away in the
orthogonal complement F̄ , ignoring details not included in our model but which
indeed might be important for the registration. To overcome this problem, we use
a distance measure, proposed in [80].

ε2(x) =
N∑

i=M+1

y2
i = ||x̃||2 −

M∑
i=1

y2
i

�� ��5.6

d̂(x) =
M∑
i=1

y2
i

λi
+
ε2(x)
ρ

�� ��5.7

where λi are the eigenvalues in F and ρ = 1
N−M

∑N
i=M+1 λi which is the average

eigenvalue in F̄ . This distance measure consist of two parts, the first
∑M
i=1

y2
i

λi
is

called ”distance-in-feature-space” (DIFS) and the second ε2(x)
ρ is called ”distance-

from-feature-space” (DFFS). In our experiments, we compare the results of using
only DIFS for face registration, which is used in [26; 76], and using both DIFS and
DFFS (see section 5.4.1). We show that using both distances result in a better
performance than using DIFS
In Figure 5.1, we give a schematic representation of the components needed for
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Search MethodInitial
Parameters

Alignment

Evaluation

Aligned
Image

Final Parameters

Probe
Image

Parameters

Gallery Images

Similarity
Score

Figure 5.1: Schematic representation of SHR - Flow diagram of our iterative

method

SHR and the interaction between them. We use an iterative search method to
find the optimal similarity between probe image and gallery images. The initial
registration parameters are given by a face detection algorithm, for instance the
method of Viola and Jones [127]. The alignment registers the probe image based
on the specified parameters. We will discuss the components in Figure 5.1 in the
following sections: evaluation (Section 5.2.2), the alignment (Section 5.2.3) and
the search methods (Section 5.2.4).

5.2.2 Evaluation

Two important issues in the evaluation function are the model and the features.
The model can be either user independent as explained in the previous section or
user specific. This we will discuss in the first paragraph below. As features, we
propose edge images, instead of grey level images, which reduce the number of
local minima in the evaluation. This will be explained in the second paragraph.

5.2.2.1 Evaluation to a user specific face model

Instead of registration to a mean face model, which may differ substantially from
individual faces, registration to a user specific model, if available may improve
registration results. For user specific face registration, we need a user template
to register a probe image. For face identification, user specific registration has
the drawback that we have to register the probe to every user template in the
database.
For user specific registration, we define the similarity measure S(TθH,Kc|Ωc),
where Ωc models registered facial images of user c. The user specific model consists
of a user template Kc and the covariance matrix ΣΩc

. For the covariance matrix
ΣΩc

, we use a within class covariance matrix that models the variations among
face images of the same person for all users, because we often do not have enough
images to estimate a user specific covariance matrix. The similarity function for
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Figure 5.2: Search space for grey level image and edge image - A 2D

search space based on the grey level image (left) and edge image (right), for scale

(left-right) and translation in y direction (front-back), showing a local minimum in

the left score landscape

the user specific model is

S(Tθ(H),Kc; Ωc) = N(V TθH;V Kc,ΣΩc
)

�� ��5.8

5.2.2.2 Using edge images to avoid local minima

Using grey level images for registration often leads to local minima in the search
space. Better registration results can be obtained by using edge images, which is
for instance shown in [39] for Active Appearance Models. In image registration,
regions containing large variations (structure) contribute more to registration than
homogeneous regions. By applying edge filters, the regions that contain structure
will be highlighted and the homogeneous regions will be suppressed. In our case,
the use of edge filters results in a search space with fewer local minima. In Figure
5.2, a 2D search space is shown where we varied the scale and translation in y-
direction of a grey level image and an edge image. The edge image (right) shows a
single clear minimum, while the grey level image has a global minimum at the same
place, but also a large local minimum in the right corner. In order to calculate the
edges in the image, we take the derivatives in the x and y directions in the images.
Because images usually contain noise, we use the Gaussian kernels Gx and Gy:

Gx(x, y) =
−x

2πσ4
exp(−x

2 + y2

2σ2
)

Gy(x, y) =
−y

2πσ4
exp(−x

2 + y2

2σ2
)

�� ��5.9

The derivatives Hx and Hy of the images are calculated by convolution. We
refer to these as ’edge images’. If we use both edge images in the feature vector
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instead of the grey level image, this doubles the length of the feature vector,
resulting in increased computation time. An alternative is to combine the two
edge images as follows into a ’magnitude image’

Hmag =
√
H2
x +H2

y

�� ��5.10

The default features used in this paper are the ’edge images’ and a comparison
between the features is performed in Section 5.4.1.

5.2.3 Alignment

We use a Procrustes transformation to align the probe image H to the gallery
images, which is common practice in face recognition, preserving the distance
ratios. Given the pixel location p = (x, y)T , we can define a transformation Uθp
on the pixel location as follows:

Uθp = sR(α)p + u
�� ��5.11

R(α) is the rotation matrix. The transformation of the image is defined as:

TθH(p) = H(U−1
θ p)

�� ��5.12

This allows us to obtain an aligned image TθH(p) by backward mapping and
interpolation. Most landmark based methods also perform this transformation
based on the found landmarks in order to obtain a registered face image [108].

5.2.4 Search Methods

In Equation 5.1, we have to maximize the similarity score to find the best alignment
parameters θ. Ideally, an iterative search method should be able to find the optimal
solution using a small number of evaluations, making it possible to register the
probe image almost real-time. The search method also has to be robust against
local minima. Confirmed by our observations, we assume reasonably smooth search
landscapes. We applied two different search methods the first is the downhill
simplex method [81] that we also used in [22] and [26], and the second is a gradient
based method.

5.2.4.1 Downhill Simplex search method

This method is able to maximize a similarity function using around 100 evalu-
ations. A good initialization of the downhill simplex method is necessary to be
robust against local minima. This was also observed in [26], where we used several
initializations to reduce outliers. To initialize the downhill simplex method, we
need to create a simplex Θ ∈ RN×(N+1) (geometric shape in N dimensions, con-
sisting of N + 1 points). To obtain the four registration parameters, this means
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that we have to select five starting points. The first starting point is given by the
initial parameter vector θ0. The other starting points are given by

Θ =
[
θ0 θ0 ±∆s θ0 ±∆α θ0 ±∆x θ0 ±∆y

] �� ��5.13

where ∆ is the maximum expected offset for a single registration parameter in
positive or negative direction, where we use the offset which gives the best simi-
larity score. The downhill simplex methods is however able to find optimal reg-
istration parameters that lay outside the maximum expected offsets. This search
method maximizes the similarity function by replacing those registration parame-
ters in the simplex that give the worst similarity score by a better set using some
simple heuristics.

5.2.4.2 Gradient based search method

In Equation 5.1, we find the best alignment parameters θ̂ by maximizing the sim-
ilarity score. We start with the initial registration parameters θ0, improving these
parameters means that we have to determine an offset to the optimal alignment
called δ [11; 52]. We achieve this by expanding the image using a first order Taylor
expansion:

Tθk+δk
H ' Tθk

H + Mθk
δk

�� ��5.14

In this case, Mθ is the Jacobian matrix of H with respect to the parameters θ,
given in [52] for a transformation with translation, rotation and scale . By setting
the derivative of Equation 5.2 with respect to δ to zero, we can determine the
offset from the original parameters:

∂

∂δk
S(Tθk

H + Mθk
δk,K|Ω) = 0

�� ��5.15

In Appendix 5.6, it is shown how this equation is solved and how updated
parameters θk+1 = θk + δk are obtained analytically. This procedure is repeated
until convergence has been reached

5.3 Experiments

In this section, we describe experiments to evaluate the performance of SHR. The
main purpose of SHR is to improve the face recognition performance, particularly
at low resolutions. The goal of the experiments, therefore, is to demonstrate and
quantify the improvement of face recognition performance if SHR is used for face
registration. We will present results of the following comparisons:
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• Comparison with earlier versions of SHR [26]. These experiments are in-
cluded to illustrate the positive effect of the new evaluation criteria given in
Equation 5.7 and of the features discussed in (Section 5.2.2.2).

• Comparison with landmark based registration based on automatically de-
tected landmarks as well as on manual landmarks

• Comparison between user independent and user specific registration.

• Comparison between two search methods (Section 5.2.4) in both performance
and computation time.

• Comparison of SHR performed on lower resolutions.

5.3.1 Experimental Setup

5.3.1.1 Face Database

To perform the experiments, we use the Face Recognition Grand Challenge ver-
sion 2 (FRGCv2) database [90], on which we perform the one-to-one controlled
versus controlled experiments. We train both face registration (landmark methods
and SHR) and face recognition methods on the training set defined in the FRGCv2.
We calculated all the similarity scores, which resulted in the Receiver Operating
Characteristic (ROC) of the entire set and the ROC of the three masks defined by
the FRGCv2 database. Mask I compares the images that are recorded within a
semester, for Mask II this is within a year, while Mask III compares images that
are recorded between semesters. To compare the different settings of SHR, we use
a random subset to reduce computational costs of the face recognition. We still
register every gallery and probe image but instead of computing all the scores,
we calculate for every probe image one genuine and one impostor score from a
randomly chosen image in the gallery. The same random images are used for all
the experiments. We show in Table 5.1, that the recognition results of the random
subset are comparable to the results on the entire set.

5.3.1.2 Face Detection

Face registration depends on the input of a Face Detection method. We used the
OpenCV implementation [61; 74] of the Viola and Jones algorithm [127] to find the
faces. We used the pretrained model called ’haarcascade frontalface default.xml’.
In order to avoid misdetections, we included some simple heuristics1 based on
the manually labelled landmarks to determine if the face regions were correctly
found. Facial images in which the face is not correctly found are removed from all
experiments.

1All landmarks have to be inside the face region and the width and height of this region is

less than four times the distance between the eyes
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Mask I Mask II Mask III Entire Random

Set Subset

PCA Mah 54.0% 48.8% 42.9% 50.3% 52.2%

PCA MahCos 72.4% 67.2% 61.8% 68.2% 69.8%

Adaboost 91.4% 88.3% 84.9% 88.9% 89.5%

PCA LDA 92.1% 90.4% 88.6% 90.8% 91.0%

Table 5.1: The verification rates at FAR = 0.1% of several Face Recognition

Methods which allow us to compare the registration methods, these verification

rates are achieved using manually registered images

5.3.1.3 Low Resolution

SHR is developed for low resolution images. Because there are no large low reso-
lution face databases, we used the FRGCv2 database and created low resolution
facial images by lowpass filtering and subsequent downsampling. Using low resolu-
tion facial images makes the comparison of the performance of our face recognition
methods with the state of the art difficult, because these are primarily focussed
on high resolution facial images. Also, landmark based registration methods work
poorly on these resolutions. For this reason, we performed the landmark finding
on high resolutions images, thus given them an advantage over SHR.

5.3.1.4 Face Recognition

We measured the performance of face registration by its effect on face recognition.
In [130], a similar comparison is performed on the FRGC database, where the
baseline PCA and PCA-LDA face recognition methods are used. We decided to
use not only holistic but also feature based methods, in order to demonstrate that
different face recognition methods benefit from improved registration. We used
our own implementation of the following face recognition methods:

• PCA Mahalanobis distance (baseline) [88]

• PCA Mahalanobis Cosine distance [88]

• Adaboost with Local Binary Patterns (LBP) [137]

• PCA LDA likelihood ratio [126]

In Table 5.1, we show the face recognition results with an interocular distance
(distance between centers of the eyes) of 50 pixels using registration with manually
labelled landmarks, showing the capacity of the face recognition methods if the
registration is almost perfect. This is confirmed by [130], where their registration
method is not able to perform better than manually registered images. From the
results in Table 5.1, we observe that of the selected face classifiers, the PCA-LDA
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likelihood ratio performs best, closely followed by Adaboost with LBP. SHR is de-
veloped for low resolution images using an interocular distance of 50 pixels instead
of the available 350 pixels, this makes comparison with other results published on
these databases difficult. In Figure 5.3, we attempt to show the relation between
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Figure 5.3: Expected results for low resolution face recognition - Best

verification rates reported during the FRVT 2006, where we show that our focus is

at even lower resolutions expecting a slightly lower verification rat

resolution and verification rate. Below approximately 50 pixel interocular distance,
we expect that the verification rate decreases rapidly. At least part of this decrease
is caused by failing registration at low resolutions, which we address in this paper.
The area of interest for camera surveillance is the shadowed area in figure 5.3 and
the stars mark the published results. In [89], an experiment is performed on a low
resolution database called HCInt portion of the FRVT 2002 (not available to us),
which uses an interocular distance of 75 pixels. The best verification rate reported
on the HCInt portion are ± 95% at FAR = 0.1% for a gallery normalized experi-
ments. Our best face recognition method gave a verification rate of 91% at FAR
= 0.1% for an interocular distance of 50 pixels with an one-to-one experiment,
which is more difficult than a gallery normalized experiment. This matches the
expectations we have of good results that can be obtained using face recognition
on facial images with an interocular distance of 50 pixels. In [91], a verification
rate of ± 67% at FAR = 0.1% was reported for the PCA Mahalanobis distance
classifier on the high resolution experiments. For the same classifier, we obtained
a verification rate of 50.3% at FAR = 0.1% for an interocular distance of 50 pixels.
This once again illustrates the drop in verification rates for low resolutions.

5.3.1.5 Landmark Methods for Comparison

We compared SHR to two landmark registration methods. The first method is the
Viola and Jones detector [127] trained to find facial landmarks. The second method
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is called MLLL (Most Likely Landmark Locator) [18], which finds the landmarks
by maximizing the likelihood ratio using PCA and LDA. This algorithm is run
in combination with BILBO, which is a subspace based method to correct for
outliers. We have trained both methods on the FRGCv2 database and evaluated
them using high resolution images. Both the Viola-Jones and MLLL+BILBO
find four landmarks (eyes, nose and mouth). Based on the found landmarks, we
calculate the Procrustes transformation to align the images.

Gallery

Probe

Automatic
Registration

Automatic
Registration

Face
Recognition

registration
template

Figure 5.4: Protocol for user independent registration - Schematic repre-

sentation of user independent registration using the same template for the gallery

and probe image

5.3.2 Experimental Settings

In this section, we introduce the default experimental settings, unless other set-
ting are explicitly mentioned, these settings are used in the experiments. We use
the user independent registration, with edge images as features and the downhill
simplex search method to find the registration parameters. The number of sub-
space components is set to 300, which is a good compromise between speed and
accuracy. For the edge images, we use kernels of 17× 17 pixels with σ = 2, which,
according to our observations, gives good results on several databases. The maxi-
mum expected offsets for scale, rotation and translation needed to create the initial
simplex are respectively 0.2, 5 degrees and 5 pixels. The downhill simplex method
can also find the optimal registration parameters outside the maximum expected
offsets. The gradient based search method is not limited in the registration pa-
rameter search either. In the case of user independent registration, both gallery
image and probe image are registered to the same user independent registration
template (depicted in Figure 5.4). The registration template is the mean face ob-
tained from the training set. For user specific registration, we register to a single
gallery image. Our subspace model is based on registered facial images, therefore,
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registration
template

Gallery

Automatic
Registration

Probe

Automatic
Registration

Face
Recognitionregistration

template

Figure 5.5: Protocol for user specific registration - Schematic representation

of user specific registration, where the template is an automatically registered gallery

image

we need a correctly registered template. Furthermore, face recognition methods
assume that both gallery and probe images are correctly registered, making proper
registration of the gallery image important for user specific registration. To obtain
a registered gallery image, we perform the user independent registration with the
mean face as registration template (see Figure 5.5). Although in our experiments
we use a single image as registration template, it is also possible to use multiple
images to build a user specific template. In this case, registration among gallery
images can also be applied to improve the accuracy of the alignment of the gallery
images.

5.4 Results

5.4.1 Comparison with Earlier Work

In Sections 5.2.1 and 5.2.2.2, we introduce a new evaluation criterion instead of
the PCA Mahalanobis distance [26; 76] and new edge features for registration.
In this section, we compare the effects of these changes separately. Figure 5.6
shows the effects which the new evaluation criteria (Bayesian Framework) and
the new features have on the face recognition results, which are depicted using
a ROC. After performing the registration with the different settings, we used
the PCA-LDA likelihood ratio method for the recognition. In Figure 5.6, the
ROC of the Bayesian Framework (grey values) shows that for FAR > 50% the
verification rate decreases quickly, and for FAR < 50% the distance to the Bayesian
Framework (edge images) remains constant. This behaviour is caused by incorrect
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Figure 5.6: ROCs of different changes in our registration method - Com-

paring the effects of our new evaluation criteria and new features, this shows that

the Bayesian Framework with edge images achieves the best results

registration, due to local minima in the search space, an example was shown in
Figure 5.2. Comparing the performance of the Bayesian Framework (edge images)
to the Bayesian Framework (magnitude images), we observe that edge images are
slightly better. For this reason, we use the edge images in the remaining part
of the paper. In Figure 5.6, we also show that the verification rate of the PCA
Mahalanobis (edge images) distance drops rapidly to 98 % when FAR decreases
from 100 %. This is caused by failures to find a correct registration. Figure 5.6
shows that the Bayesian Framework (edge images) containing the Distance From
Features Space has made SHR more robust against these failures, resulting in a
higher overall recognition performance.

5.4.2 Subspace-based Holistic Registration versus Landmark

based Face Registration

In this experiment, we registered every face image using two landmark based face
registration methods, SHR (user-independent face model) and the manually la-
belled landmark given by FRGCv2 database. For each face recognition method,
we had to train the recognition methods on face images, which were registered
by the specific registration method. This made the recognition method more ro-
bust against the specific variations. For SHR, we used the manual registration
of the training set to train the face recognition methods. The results of our face
recognition experiments using PCA-LDA likelihood ratio face recognition method
are shown in Figure 5.7. Note that these results are obtained for verification at
50 pixels interoccular distance. Our focus is on the registration, which means
that the relative results to manual registration are important. Other papers on
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Figure 5.7: ROCs of different registration methods - Comparison of face

recognition (PCA-LDA likelihood ratio) with several registration methods on FRGC

experiment 2.1 using the entire set. SHR outperforms the results of face recognition

with landmark based methods

face registration like [18; 130] do not achieve better recognition results than man-
ual registration on the FRGC. In Figure 5.7, we observe that the performance of
SHR is better than manual registration at FAR ≤ 0.1%. SHR also outperformed
the automatic landmark based registration algorithms, which used high resolution
images to obtain a registration. In Figure 5.7, the best landmark based regis-
tration method is MLLL+BILBO, which performed better than the Viola-Jones
landmark method. In the case of the Viola-Jones landmark method, we removed
997 of the 15982 images from the query set of experiment 2.1, because 3 or less
landmarks where found in these images which often resulted in poor alignments.
We also experimented with the Viola-Jones method at an interocular distance of
50 pixels. In this case it failed to find the 4 landmarks for 10734 of the 15982 face
images. In Table 5.2, we present the verification rates of all registration methods
and the gain or loss in the recognition results by using automatic face registration
methods instead of the manual face registration. Again all face recognition results
were obtained at 50 pixels interocular distance. We observe that SHR improved
the performance of all the face recognition methods in comparison with automatic
landmark registration, which indicates that it is not dependent on the choice of
the face recognition method. Some face recognition methods seem to be more
robust against registration variations, for example Adaboost, but still more ac-
curate registration improves the final recognition performance. In Table 5.2, the
performance of the user-independent SHR is for most recognition methods simi-
lar or better than manual registration. To understand why SHR sometimes
performs better than manually registered images, we first determined the differ-
ence in found registration parameters between manual and automatic registration,
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Face FAR Viola-Jones MLLL+BILBO SHR Manual

Classifier (high resolution) (high resolution) (low resolution)

PCA Mah 1% 57.3% (-8.9%) 67.4% (+1.3%) 68.1% (+2.0%) 66.2%

0.1% 44.5% (-5.8%) 52.9% (+2.6%) 54.0% (+3.3%) 50.3%

0.01% 34.0% (-3.4%) 40.9% (+3.4%) 42.2% (+4.7%) 37.5%

PCA MahCos 1% 73.2% (-13.8%) 85.2% (-1.7%) 87.9% (+2.0%) 87.0%

0.1% 57.4% (-10.8%) 68.2% (-0.0%) 71.9% (+3.3%) 68.2%

0.01% 39.7% (-9.3%) 47.4% (+4.1%) 50.7% (+4.7%) 43.3%

Likelihood ratio 1% 86.7% (-10.1%) 94.0% (-2.8%) 95.9% (-0.9%) 96.8%

0.1% 76.9% (-13.9%) 86.9% (-4.7%) 91.0% (+0.2%) 90.8%

0.01% 65.5% (-14.8%) 77.2% (-3.1%) 82.5% (+2.2%) 80.3%

Adaboost 1% 86.5% (-8.4%) 93.5% (-1.4%) 94.1% (-0.8%) 95.0%

0.1% 78.3% (-10.5%) 87.1% (-1.7%) 87.9% (-1.0%) 88.9%

0.01% 69.8% (-11.1%) 78.9% (-2.0%) 80.1% (-0.8%) 80.9%

Table 5.2: Verification rate at FAR = {1%, 0.1%, 0.01%} and in parenthesis the

relative contribution that automatic registration has in comparison with manual

registration on FRGC Exp 2.1, comparing all registration methods using all face

classifiers. The best automatic registration is achieved using user independent SHR

using low resolutions, this often performs even better than manual registration
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Figure 5.8: Differences in Registration Parameters from Manual Regis-

tration - Cumulative differences of registration parameters compared with manual

registration, showing that MLLL+BILBO produces very accurate landmarks and

that SHR and Manual differ especially in scale and translation in y-direction
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Figure 5.9: Examples of misalignments using manual registration - Exam-

ples of registration, the first and second column contain the face detection regions of

probe and gallery images together with the manual landmarks. The third column,

we present half of the probe image and other half of gallery image to compare the

final alignment of manual registration. For the fourth column, we performed the

same procedure as in the third column but with user independent SHR
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which is shown in Figure 5.8. We observe that the results of MLLL+BILBO,
which finds landmarks very accurately, are closer to manual landmarks in scale
and y-translation. Both SHR and MLLL+BILBO have similar results in rotation
and x-translation, but SHR finds different scale and y-translations. In Figure 5.9,
a few examples of facial images with large differences in scale and y-translation
between registration with manual landmark (third column) and SHR user inde-
pendent (fourth column) are shown, together with the input for the registration
determined by the face detection of the probe image (first column) and gallery
image (second column). The white marks on the face are the manually labelled
landmark locations. We pictured half of the registered probe image (left) and
the other half registered gallery image (right) to show the alignment between the
images. In the first row of Figure 5.9, we show a probe image with the head tilted
up and a gallery image without tilt, because of the tilt of the head the relative
positions of the landmarks change. We observe that the eyes, nose and mouth in
the probe and gallery image are on almost the same line using manual registration,
but there is a big difference in scale. On the other hand, SHR aligned both images
on the same scale, this places the nose of the probe image higher but gives a better
match with the mouth. In the second and third row, a slightly different definition
of the landmark location is used (especially the nose), resulting in misalignments
for manual registration, where the two halves in the third column do not overlap
in the nose and mouth regions because of scaling differences. Another difficulty in
the third images are the landmark locations of closed eyes, which is done correctly
in this case, positioning the eyes somewhat above the closed eyebrows, but this is
often not the case. In the last column of Figure 5.9, we observe that expressions
can also change the ratio between landmark especially in the mouth area. The
nose in the probe image is located higher than the nose in the gallery image using
manual registration.

5.4.3 User independent versus User specific

In this section, we compare user specific registration to the user independent reg-
istration. In Figures 5.4 and 5.5, we show the two scenarios to obtain the user
independent and user specific templates. In Figure 5.10, we show ROCs of the
user independent and user specific face registration using the edge images. We
observe that the performance consistently improves by using user specific registra-
tion. Figure 5.10 also shows that user specific registration performs slightly better
than manual registration, which indicates that SHR gives more stable registration
than the landmarks located by humans.

5.4.4 Comparing Search Algorithms

The two search methods, described in Section 5.2.4, were compared using a simi-
lar experiment as performed in the previous section. In all other experiments, the
downhill simplex search method is used. It costs our matlab implementation on
AMD opteron 275 around the 2.7 seconds to perform a registration for a single
image, while the obtained matlab implementation of MLLL + BILBO [18] takes
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around 7 seconds for a single image. The Viola and Jones landmark implementa-
tion in C++ performs almost real-time registration. Note that we spent not much
effort in optimizing our code, because our main focus is on improving the accuracy.
However, we can imagine that computation time in practical scenarios can be an
issue. For this reason, we show a trade off between computation time measured in
the number of iteration and accuracy measured in the verification rate, see Figure
5.11. Although the average search time of the gradient based method is larger,
Figure 5.11 shows that it is able to find a good solution within a smaller number of
iterations. This makes the difference between both search method in computation
and accuracy very small.

5.4.5 Lower resolutions

In video surveillance, the resolution of the facial images is often below the in-
terocular distance of 50 pixels used in previous section. To simulate this, we
downsampled the images even more. In this section, we ran experiments using
several lower resolutions to test the performance of SHR. After finding the align-
ment parameters for these resolutions, we use the alignment to register the facial
images using an interocular distance of 50 pixels. This allows us to show the effects
of low resolution on the registration, while ignoring the effects of low resolution
on the face recognition. In Figure 5.12, we show the results on user independent
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Figure 5.12: Registration performance by lower resolutions - Registration

performance by varying the resolution used in SHR, the found registration param-

eters are then used to align facial images with an interocular distance of 50 pixels,

showing only the performance of SHR at low resolution, which is still good at an an

interocular distance of 25 pixels

registration for all the face recognition methods. We expect that registration per-
formance decreases for lower resolutions. The registration results start becoming
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worse at an interocular distance smaller than 25 pixels. Some methods like Ad-
aboost are less sensitive for the registration errors caused by the lower resolutions
than for instance PCA-LDA likelihood ratio.

5.5 Conclusion

We presented a novel subspace-base holistic registration (SHR) method, which is
developed to perform registration on low resolution face images. In contrast to
most landmark based registration methods, which can only perform accurate reg-
istration on high resolutions. SHR is able to use a user independent face model or
a user specific face model to register face images. For the user specific registration,
we defined two scenarios to register the gallery images. We show that by using
edges as features for the registration, we obtain better results than using the grey
levels of the image. The search for the best registration parameters is iterative
and we proposed two search methods namely the downhill simplex method and a
gradient-based method.
To evaluate the face registration, we measured the effects it has on the results of
face recognition. We used the FRGCv2 database to perform our face registration
experiments. We compared SHR with two landmark based registration methods,
working on high resolution facial images. Nevertheless, the recognition results
of SHR were better than those of the landmark based methods. User indepen-
dent SHR gives a similar performance in face recognition results than registration
with manually labelled landmarks. User-specific SHR performs better than the
user-independent SHR and manual registration. One of the advantages over the
landmark based methods is that SHR is able to register low resolution face images
with an interocular distance as low as 25 pixels. The results at this resolution
make SHR suitable for use in video surveillance.

5.6 Appendix: Gradient based search method

In this appendix, we discuss the gradient based search method in more detail. In
Equation 5.14, we use first order Taylor series to rewrite the probe image into
Tθk

H + Mθk
δk. This allows us to find the maximum by taking the derivative of

the similarity function, which in our case is the same as minimizing the distance
d̂(x) in Equation 5.7. We write the probe image Tθk

H + Mθk
δk in terms of a

feature vector xk + Mθk
δk. From [52], we know that the Jacobian matrix Mθ for

transformation of scale, rotation and translation is defined as follows:

Mθk
=


∇pTθk

H(p1)TΓ(p1)
∇pTθk

H(p2)TΓ(p2)
...

∇pTθk
H(pN )TΓ(pN )

Σ(θ)
�� ��5.16
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Γ(p) =
[
1 0 −y x
0 1 x y

] �� ��5.17

Σ(θ) =

 1
sR(α) 0 0

0 1 0
0 0 1

s

 �� ��5.18

In this case, p = (x, y)T is the pixel location, where ∇p gives the gradients in
x and y direction. For clarity we rewrite the distance, in (Equation 5.7):

d̂(x) = yTΛ−1y +
||x̃||2 − ||y||2

ρ

�� ��5.19

d̂(x) = (ΦTx− ΦT x̄)TΛ−1(ΦTx− ΦT x̄) +
||x− x̄||2 − ||ΦTx− ΦT x̄||2

ρ

�� ��5.20

We have to substitute x by xk + Mθk
δk, which results in:

d̂(xk + Mθk
δk) = (yk + ΦTMθk

δk)TΛ−1(yk + ΦTMθk
δk) +

||x̃k + Mθk
δk||2 − ||yk + ΦTMθk

δk||2

ρ

�� ��5.21

We take the derivative of the distance function with respect to δk and set it
equal to zero. This gives us the following equation where for clarity A = ΦTMθk

.
Note that Λ−1 is a diagonal matrix.

ATΛ−1(yk +Aδk) +
1
ρ
MT
θk

(x̃k + Mθk
δk)− 1

ρ
AT (yk +Aδk) = 0

�� ��5.22

This give us the follow linearly solvable equation for δk:

(ATΛ−1A+
1
ρ
MT
θk

Mθk
− 1
ρ
ATA)δk = (ATΛ−1yk +

1
ρ
MT
θk

x̃k +
1
ρ
ATyk)

�� ��5.23

Using this function, we can determine the new registration parameters θk+1 =
θk + δk. We repeat this gradient-based search method multiple times to find the
final registration parameters.
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Conclusion Part II

In Chapter 4 and Chapter 5, we described new face registration methods. These
are the measures that we have taken to improve the face recognition system for
low resolution facial images. In order to answer our last specific research question:
how much improvement of the face recognition performance is obtained with the
measures mentioned before? We have observed that these registration methods
perform well for both controlled and uncontrolled conditions. These registration
methods achieve the same face recognition performance as face images registered
using manually labelled landmarks. In comparison with manually labelled land-
marks there is no improvement, but this registration is often seen as almost perfect
and we have to learn our methods based on this type of registration. In comparison
with the automatic landmark based methods, the registration has achieved a large
improvement. This makes the registration methods also suitable for applications
not limited by low resolution like for example access control.
Our registration methods perform a search operation in order to find the best
registration parameters. This search operation is sometimes more time consuming
than other registration methods. There are, however, many accepted methods that
perform similar or even more complex search operations like the Active Appear-
ance Models. An advantage is that in video recordings, we can use the registration
parameters of the previous frame, to register the face in the next frame. This can
be useful in case of camera surveillance, where video recordings are often avail-
able.
In camera surveillance, there are, however, still challenges for the face registra-
tion. In most entrance and compulsory scenarios (Section 1.1.4), frontal or almost
frontal face images are available. However, in camera surveillance, people do not
always cooperate, which can result in face images under pose. Although the reg-
istration methods can deal with small variations in poses, these face registration
methods fail for large pose variations. In order to deal with this, pose registration
parameters must be estimated in addition to scaling, rotation and translation.
Furthermore, 3D models of the face are necessary in order to model the appear-
ance of the face for the different poses. In the next part, we already investigate
the use of 3D models on 2D face images. Although we use the 3D models in the
face intensity normalization component, the estimation of the surface can also be
used for pose estimation.
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Part III
I L L U M I N AT I O N

In camera surveillance, faces are recorded under uncontrolled conditions. In these
scenes, the illumination in facial images can not be controlled. This differs from
other applications, like access control where the acquisition is usually performed
in a more controlled environment. The gallery images in camera surveillance are
often recorded under controlled conditions, for instance if passport photos are used
or if a criminal has been caught by the police and a mugshot is taken. Comparing
facial images which are recorded under uncontrolled conditions is difficult, be-
cause the illumination in the faces causes large variations in the appearance. For
this reason, we defined the following research question: Which measures can be
taken to improve the face recognition system for images captured under uncon-
trolled illumination conditions? The uncontrolled illumination conditions mainly
affect the face comparison component. It sometimes has a small influence on the
face detection and registration, although the face detection and registration are
in most cases very robust to illumination variations. For this reason, we inves-
tigate if face intensity normalization methods can improve the face comparison
component. Several face intensity normalization methods have been developed to
correct the illumination in faces, but they are often tested on datasets recorded
in laboratory conditions. We also investigated the performance on images taken
under uncontrolled conditions.
This part contains four chapters which are based on our publications on the face
intensity normalization component. In the first chapter, we describe a face inten-
sity normalization method, which is extended in the next chapters. To extend this
method, we gradually used more advantaced reflectance and face shape models.
We will discuss the major difference between the chapters in short:
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• Chapter 6 is based on [23]. In this chapter we explain a new illumination
correction method for facial images. This method is able to correct for a
single light source and uses an additional error term to correct for shadows
and reflections. A subspace model of the face shape is developed from 3D
range images in order to model the facial appearance. By finding an esti-
mate of the face shape, we are able to render a facial image under frontal
illumination conditions. These images are used in the experiments, where
the correction method is tested on both uncontrolled illumination conditions
and illumination conditions created in a laboratory.

• Chapter 7 is based on [27]. In this chapter we discuss some extensions on the
previous method. Instead of modelling a single light source, we model both
an ambient and a diffuse light source. This allows us to explain reflectance
in shadow areas. Another difference is that we used a surface and albedo
model instead of the face shape model. With the surface model, we can
apply geometrical constraints to the face shape which improves the face
shape estimation.

• Chapter 8 is based [28], in which we combine face intensity normalization
methods. In Section 2.4, we explain that there are two categories of Face
Intensity Normalization methods. The methods in the first category perform
normalization based on local regions, while methods in the second category
use a physical model to determined the illumination condition in the entire
face images. The methods from both categories have advantages and disad-
vantages. We have combined these methods using score and decision level
fusion to improve the overall recognition results.

• Chapter 9 is based on [25]. In this chapter, we extend the method explained
in Chapter 7. The major improvement is that we are able to model multiple
light sources, using a virtual illumination grid. We have also coupled the
surface and albedo models, instead of using two separate subspace models.
Experiment 4 of the Face Recognition Grand Challenge version 2 database
is used to compare several face intensity normalization methods.
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M O D E L - B A S E D R E C O N S T RU C T I O N FO R I L L U M I N AT I O N
VA R I AT I O N I N FAC E I M AG E S

6.1 Introduction

In video surveillance applications, face recognition has been a difficult problem
due to variations in the face, like illumination, pose and facial expressions. In
this chapter, we introduce a method for correcting for the illumination variations.
Correcting for these variations is necessary because they are often larger than the
variation due to changes of the person’s identity. We propose a method that is
able to correct the illumination in a single image.
Several approaches have already been proposed in the literature, that make face
images invariant for illumination. These approaches can be divided into two cat-
egories. The first category works by applying a preprocessing step to the images,
like Histogram Equalization [105] or Local Binary Patterns [55]. These meth-
ods are direct and simple but often lack a theoretical explanation. The second
category works using physical models of the illumination mechanism and its inter-
actions with the object surface. The Illumination Cone [48] falls in this category,
which estimates the shape from at least three images under different illumina-
tion conditions. An other method is the Quotient Image [107] which estimates
illumination of a single image allowing them to compute a quotient image. This
method does not model shadows and reflection. The method proposed in [110] can
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deal with shadows and reflections by adding an error term. In the 3D morphable
model described in [20], the Phong model is applied to simulate the reflection,
also shadows are properly modeled by the 3D shape of the face. In our method,
we choose to model shadows and reflection by adding an error term as in [110],
making our method computationally efficient, but we use a shape model derived
from 3D range maps, allowing us to estimate the shape from a single image.
This chapter is organized as follows, in Section 6.2 we describe our method to
correct illumination variation in face images. In Section 7.3 we describe the ex-
periments and the results of the face recognition algorithm on the reconstructed
face images. In Section 6.4 we present some conclusions.

6.2 Method

6.2.1 Lambertian model

In order to solve the illumination problem in face recognition for a single image,
we begin with some simple assumptions. Our first assumption is that we have a
single light source at infinite distance, making the problem easier and computa-
tionally tractable. The direction and intensity of the light source is not known to
us. Recovering an unknown shape for a 2D image without further knowledge is
impossible, because many 3D shapes result in the same 2D image. For this reason
we use a 3D face shape model which allows us to estimate the face shape in the
face image. In this chapter, we assume that the illumination of faces behaves to a
large extent according to the Lambertian equation. We introduce an error term to
model shadows and reflections which are normally not included in the Lambertian
equation [110]. This gives the following Lambertian equation:

b(x) = c(x)n(x)T si+ e(x; s)
�� ��6.1

x is the pixel position and b ∈ R is the pixel intensity in the image. The pixel
intensity is determined by the dot product of the shape and the illumination.
The surface normals n ∈ R3, which define the direction of the reflection, and the
albedo of the surface given by c ∈ R together are the shape h(x) = c(x)n(x)T .
The direction of the light, which is a normalized vector given by s ∈ R3, and the
intensity of the light, which is given by i ∈ R, describe the light conditions v = si.
The error term e ∈ R that we introduce allows us to handle reflection and shadows
which are not modeled in the Lambertian equation. Instead of writing these term
for every pixel position x, we can also vectorize the image giving us the following
equation:

b = Hv + e(s)
�� ��6.2

In our case we have M pixel positions, which gives us the vectorized face image
b ∈ RM×1, a matrix which contains the face shape H ∈ RM×3 and the error term
e(s) ∈ RM×1.
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6.2.2 Overview of our correction method

In this chapter, we want to correct the illumination in a single image, where we
only have the pixel intensities b(x) of the Lambertian equation. The other terms;
the shape h(x) and light v have to be estimated by our method. Our method uses
a model of the face shape, which allows us to calculate the parameters of the face
shape given that we know the light parameters. Because the lighting is unknown,
we search for the light parameters which give the optimal face shape parameters.
For different light directions, we estimate a light intensity and calculate the face
shape. We evaluate all the face shapes calculated under different light directions.
Using kernel regression, we are then able to determine the final face shape from
the different face shapes. The different steps of our method are given below in
pseudo-code:

• Learning a model of the face shape (offline)
• For different light direction sj

– Calculate a shadow and reflection term ej(x; sj)
– Estimate the light intensity ij which gives us light source vj
– Fit the face shape model to the face image which gives us the shape

hj(x)
– Evaluate the shape hj(x) which gives us a distance measure dj

• Calculate the final shape h(x) using kernel regression
• Refine the albedo of the surface c(x) to obtain more details

Throughout this chapter, j is a index for the different light direction, where we
calculate for J light directions error terms ej(x; sj), light intensities ij , face shapes
hj(x) and distance measures dj . Using the different shapes and distances, we can
obtain one final shape which we refine. With this final shape, we can calculate a
face image under frontal illumination conditions, using the following equation:

bfrontal(x) = h(x)Tvfrontal

�� ��6.3

In the next sections, we will discuss the different steps described in our pseudo
code in more detail.

6.2.3 Learning the Face Shape Model

A set of face images and 3D range maps provide us with the means to calculate the
face shape H for each face image (See Section 6.3.2). Because we have multiple face
shapes we can determine a mean shape H and variations from this mean shape.
To calculate the variations, we vectorized all the L obtained shapes into the data
matrix X ∈ R3M×L from which we compute the covariance matrix Σ. Using
Principal Component Analysis (PCA), we can decompose Σ as Σ = ΦΛΦT , where
the columns of Φ are the eigenvectors and the matrix Λ contains the eigenvalues on
the diagonal. The columns of Φ ∈ R3M×K , are converted to M×3 matrices, which
we denote by Tk ∈ RM×3. These matrices {Tk}Kk=1 contain the most important
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variations of the face shape. In Figure 6.1, we calculated the surface from the
shape and on this surface we have drawn a reconstructed image under frontal
illumination. The left image on top is the mean shape and the other images from
left to right are the first 5 most important variations in the shape model.

Figure 6.1: Eigenshapes determine with PCA - The mean shape and first

five deviation of the shape model, on the face shape we draw the face image under

frontal illumination

6.2.4 Shadow and Reflection Term

In this chapter we use the Lambertian equation as basis, which is unable to deal
with shadows and reflection. For this reason, we added the error term e(x; s) in
the equation 9.1. We assume that the error term depends on the light direction
s, which is the determining factor for shadows and reflections. We use a 2D face
database with labelled illumination conditions to learn the error term for each light
direction. Using the kernel regression method described in [110], we can calculate
for a light direction sj (in Section 6.2.2) the mean error µe(x, sj) and the variance
σ2
e(x, sj). For the error term in equation 9.1, we take ej(x; sj) = µe(x, sj). The

variance σ2
e(x, sj) will be used later in the Section 6.2.9. Although we use a face-

independent mean term for the shadows and reflections, this estimation is better
than ignoring the error term.

6.2.5 Light Intensity

We want to estimate a face shape using the face image and our face shape model,
where we know the light direction sj and the error term ej(sj). To estimate this
shape we have to know the light intensity i which allows us to calculate the light
conditions v = si. To calculate the intensity, we replace the unknown shape H
with the mean shape H. Using a linear solver, we are able to solve the following
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equation, where the light intensity ij is the unknown:

ij = arg min
ij
‖(Hsj)ij − (b− ej(sj)‖2

�� ��6.4

Because this is a overcomplete system, we can use the mean face shape H to esti-
mate the light intensity ij , which still gives a very accurate estimation. However,
this might normalize the different intensities in the skin color of different persons.

6.2.6 Estimation of the Face Shape

In the previous sections, we calculated for a light direction sj , the error term
ej(sj) and light condition vj . Using these terms we are now able to obtain the
face shape Hj . In this section, we will calculate the shape using the face shape
model obtained in Section 6.2.3. Using the face shape model, we can replace Hj

with:

Hj = H +
K∑
k=1

Tkyj,k
�� ��6.5

This is the mean shape and the K most important variations. Our approach has
much in common with 3D morphable models [20], however we apply it solely for
shape recovery. We can now rewrite the Lambertian equation as follows 9.1:

Hvj +
K∑
k=1

Tkvjyj,k = b− ej(sj)
�� ��6.6

K∑
k=1

Tkvjyj,k = b− ej(sj)−Hvj
�� ��6.7

Instead of calculating the shape Hj , we are now able to calculate the variations
yj ∈ RK of the shape using a linear solver. In this case, we write Tkvj = Ak and
b− ej(sj)−Hvj = c giving us the following linear solvable equation:

yj = arg min
yj

‖Ayj − c‖2
�� ��6.8

To calculate the shape Hj from the parameters yj obtained in Equation 6.8, we use
Equation 6.5. In this case, we are able to estimate the shape given the direction of
the illumination sj . In the next section, we explain how we evaluated the obtained
face shape.

6.2.7 Evaluation of the Face Shape

To evaluate the face shape we made two observations: First, the found variations
will be small when the light direction is similar to the light direction in the face
image. Second, when the light directions are similar, the found variations of the
face shape create a reconstructed image which matches the input image. These
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criteria are similar to the criteria used in the active shape models [40]. Although
in their case, they can compare their output directly with the image, we have to
convert our found shape Hj belong with the light direction sj to a reconstructed
image bj , which is calculated as following:

bj = Hjvj + ej(sj)
�� ��6.9

Because we calculate for different light directions sj new reconstructed images bj ,
we can compare these images with the original image b. We do this by calculating
the sum of the square differences between both images as follows:

ε2 = (b− bj)T (b− bj)
�� ��6.10

We know that the reconstructed image bj contains the variations yj to the face
shape model, because vj and ej(sj) are constants. Our face shape model has only
K variations, making it impossible to explain all deviations in the face images. In
[40], the distance measure how well the model fits is given by:

dj =
K∑
k=1

y2
k

λk
+
ε2

ρ

�� ��6.11

We use the estimation of [80] for ρ = 1
3M−K

∑3M
k=K+1 λk. Using this distance

measure, we can easily evaluate the quality of the found shape for a certain light
direction.

6.2.8 Calculate final shape using kernel regression

In Section 6.2.6, we calculated the face shape parameters {yj}Jj=1 for different
light directions sj . In Section 6.2.7, we evaluate the distance measures {dj}Jj=1,
which determine the quality of the different face shape parameters. The light
directions sj are the same as the light directions used in the face database with
labelled illumination conditions. The main reason that we use the same light
directions is because these light directions cover a complete grid of light directions.
This is ideal for applying kernel regression [7]. Using the obtained face shape
parameters {yj}Jj=1 and the distances {dj}Jj=1 our regression method can be seen
in the following equations:

y =
J∑
j=1

wjyj/(
J∑
j=1

wj)
�� ��6.12

wj = exp[−1
2

(dj)/σ)2]
�� ��6.13

In the above equation, σ is determined so that 5 percent of the distances lie within
1×σ. The final shape parameters obtained from y give us the final shape H using
Equation 6.5. We can calculate the light conditions v using a linear solver, which
allows us to determine the final light conditions.
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6.2.9 Refinement

The obtained shape can be divided into two parts, the first part are the surface
normals n(x), the second part is the albedo of the surface denoted by c(x). After
estimating the final shape H, we observed that the reconstructed frontal illumi-
nated image from shapes does not contain all details present in the original face
image. Partially, this phenomenon can be explained by the fact that we do a
dimension reduction. Another part can be explained by the fact that the kernel
regression performs an interpolation. To recover these details, we recalculate only
the albedo of the surface c(x). Because the albedo of the surface contains most
of the details, while the surface normals contain the larger structures of the face
shape. To calculate the albedo c(x) we use a MAP estimate give by the following
equation:

c(x)MAP = arg max
c
P (b(x)|c(x))P (c(x))

�� ��6.14

As can be seen from Equation 6.14, we estimate the albedo for every pixel. For
clarity, we will drop the ”(x)” in the following equations and replace the surface
normals and final light condition n(x)T si with the constant q. The albedo of the
surface c(x) can be estimated by the following equation, where we assume two
Gaussian distributions:

cMAP = arg max
c

N(cq + µe(s), σ2
e(s))×N(µc, σ2

c )
�� ��6.15

arg min
c
L =

(
i− cq − µe(s)

σe(s)

)2

+
(
c− µc
σc

)2 �� ��6.16

The mean and variance of the error term are calculated with kernel regression,
which is described in Section 6.2.4. The log probabilities L are given in Equation
6.16. We find the minimum by taking the derivative and make it equal to zero.
The new albedo cMAP contains more details than the albedo obtained using the
PCA model. We have observed that the details are very important in the face
recognition processes.

6.3 Experiments and Results

The purpose of the illumination correction is to improve the recognition rate of
the face classifier. To evaluate this we performed two experiments to test if our
correction algorithm indeed improves the recognition results. The first experiment
is done on the Yale B databases to see if our algorithm can deal with different
illumination conditions. The second experiment is performed on the FRGCv1
database where we use controlled face images for enrollment and the uncontrolled
face images for the classification.

6.3.1 Face databases for Training

In the Section 6.2, we described our method which uses two different face databases
for training. In this chapter, we use publicly available face databases. For the shad-
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ows and reflections, we used the Yale B [48] and extended Yale B [72] database (for
short just the Yale B databases), these databases contain face images illuminated
under different labelled light directions. To make a shape model, we needed a
face database which contains both images and 3D range maps. The Face Recogni-
tion Grand Challenge (FRGC) [83] database is a publicly available database with
a subset which contains 3D range maps. To make the shape model we used a
subset of the entire 3D FRGC database namely the Spring 2003 3D range maps
and face images. These face images contain almost frontal illumination and no
shadows, making this subset of the database ideal for the calculation of the shape
model. We performed some simple spike removal and filling techniques to obtain
better surfaces from which we calculated the surface normals. Using these surface
normals we are able to derive the shape model.

6.3.2 Determine albedo of the Shape

From the range maps, we are able to calculate the surface normals n(x) for each
pixel in the image. In this case, we obtained for every pixel the image intensity
b(x) and the surface normals n(x). Looking at the Lambertian equation 9.1, we
need for the shape h(x) also the albedo of the surface c(x). Because the face
images and 3D range maps where taken under almost frontal lighting, we decided
to ignore the e(x) term. In this case we only have to obtain the light conditions, to
be able to calculate the albedo of the surface c(x). To estimate the light conditions
v we determined the mean albedo of the surface µc(x) from the Yale B databases,
which allows us to estimate v as follows:

g(x) = µc(x)n(x)

v = arg min
v
‖Gv − b‖2

�� ��6.17

In Equation 6.17, we first calculate the temporary shape g(x) to estimate the
light conditions v. We represent the temporary shape in the matrix G ∈ RM×3.
Using a linear solver we are able to calculate v, see Equation 6.17. Using the
light conditions v we can calculate the albedo of the surface with the following
equation:

c(x) =
b(x)

n(x)Tv

�� ��6.18

We calculate for every pixel the albedo of the surface c(x), sometimes these values
become very large because the surface normals are perpendicular with the light
source. In those case we use a filling algorithm to correct for these mistakes.

6.3.3 Face Recognition

The illumination correction is a preprocessing step to improve the face recognition.
For this reason, we performed a recognition experiment on two face databases to
see if the correction indeed helps improving the recognition results. For the face
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recognition, we performed a feature reduction by subsequently using a PCA [123]
and LDA [16] transformation to the corrected face images, using 200 PCA and 50
LDA components. After feature reduction, we use the likelihood ratio, described
in [126] to obtain the similarity scores. In the next sections, we discuss how this
classifier is used to obtain the results on the different databases.

6.3.4 Yale B database

The Yale B databases are in our case used to train the illumination model. These
databases also allow us to evaluate our algorithm under different illumination
conditions. Because we trained our illumination model on the Yale B databases,
we performed a leave one person out experiment, with all the face images with the
azimuth and elevation angle below the ±90 degrees. In Figure 6.2, we show the
original and reconstructed face images of a person in the Yale B database, where
we used both our method and the method describe in [110] for correction. In the
case of big shadows, like the eyes in the most right image in Figure 6.2, the method
in [110] corrects by filling in the mean face. Our method however is bound to the
shape model which also has to explain dependencies between pixels, which allows
us to correct more user-specific
We used all the corrected face images obtained from the Yale B databases for a

Figure 6.2: Reconstructed face images of the Yale B database - Face images

from the Yale B database, the first row contains uncorrected images, the second row

contains the correction of [110] and the last row is corrected using our method.

recognition experiment. We trained on thirty persons and used the face images of
the remaining eight persons for enrollment and testing. We compared each image
with the other images taken under all the different illumination conditions, where
we left out the images which are taken under similar illumination conditions. We
repeated this experiment until we obtained the similarity scores for every person
with all the other persons in the database. The Receiver operating characteristic
(ROC) of this experiment is shown in Figure 6.3. For this experiment, we clearly
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see that our method (EER: 12.83%) performs better than the method in [110]
(EER: 17.84%) and the uncorrected images (EER: 20.82%).
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Figure 6.3: ROCs of illumination correction methods on the Yale B

database - The ROC of the face recognition experiment on the Yale B databases,

where the solid line is our correction method, the dashed line is the method describe

in [110] and the dotted-dashed line is for the uncorrected images

6.3.5 FRGCv1 database

The main purpose of our method is to solve the surveillance problem where we
have face images taken under controlled conditions but we also want to recognize
these persons under uncontrolled conditions. In our case, the main focus is the illu-
mination correction of these face images. The Face Recognition Grand Challenge
version 1 contains frontal face images taken under both controlled and uncon-
trolled conditions which allows us to setup an experiment using this database. We
corrected the illumination effects on all images in the FRGCv1 database, both
the controlled and uncontrolled conditions. Examples of some reconstructed face
images from the FRGCv1 database are shown in Figure 6.4.
For our recognition experiment, we randomly divided the uncontrolled and con-
trolled face images into two parts, each containing approximately half of the face
images. We used the first halves of both sets to train our face classifier, the second
half of the controlled images are used for the enrollment of the one user template
for every user and the second half of the uncontrolled images are used as probe
images. We repeated this experiment 20 times randomly splitting the database
to remove statistical fluctuations. The ROC curves of our experiment are shown
in Figure 6.5, where our method obtained a EER of 4.35 %, while using uncor-
rected images we obtain a EER of 4.80 %. We also show the results of [110],
but their method is not able to deal with different light intensities because it has
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Figure 6.4: Reconstructed face images of the FRGCv1 database - Face

images from the FRGCv1 database, the first row contains uncorrected images, the

second row contains the corrected images, with for both persons a controlled and

uncontrolled images.

been trained on the Yale B databases which only contains one intensity. Although
our method improves the recognition rates in this experiment, the improvement
is smaller than the one reported on the Yale B database. A reason is that the
FRGC database contains other challenges like small poses, expressions, motion
blur, while the Yale B database only focusses on illumination problems.

6.4 Conclusion

In this chapter, we propose a novel approach to correct face images for unknown
illumination conditions. By fitting a face shape model under different light direc-
tions on the face images, we are able to estimate the face shape from which we can
reconstruct a face image under frontal illumination. To test if these reconstructed
face images improve the recognition rates we setup two experiments. In our first
experiment, we achieve better recognition rates on the reconstructed face images
acquired in a laboratory under different kinds of light conditions. The second
experiment shows our method also improves the recognition results under uncon-
trolled illumination, making the algorithm suitable for surveillance applications.
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Figure 6.5: ROCs of illumination correction methods on the FRCGv1

database - The ROC of the face recognition experiment on the FRCGv1 database,

where the solid line is our correction method, the dashed line is the method describe

in [110] and the dotted-dashed line are the uncorrected images

106



7
M O D E L - B A S E D I L L U M I N AT I O N C O R R E C T I O N FO R FAC E
I M AG E S I N U N C O N T RO L L E D S C E N A R I O S

7.1 Introduction

One of the major problems with face recognition in uncontrolled scenarios is the il-
lumination variation, which is often larger than the variations between individuals.
We want to correct for these illumination variations in a single face image. In the
literature, several methods have been proposed to make face images invariant to
illumination. These methods can be divided into two categories: The first category
contains methods that perform preprocessing based on the local regions, like His-
togram Equalization [105] or (Simplified) Local Binary Patterns [55; 121]. These
methods are direct and simple, but fail to model the global illumination conditions.
The methods in second category estimate a global physical model of the illumi-
nation mechanism and its interaction with the facial surface. One of the earlier
methods in this category is the Quotient Image [107], which estimates illumination
in a single image allowing the computation of a quotient image. More recent cor-
rection methods [110; 139] are also able to deal with shadows and reflections using
an addition error term. In our experience, these methods work on images with
illumination conditions created in a laboratory, but fail in uncontrolled scenarios.
In [20], 3D morphable models are used to simulate the illumination conditions in
a single images, calculating shadows and reflections properly. The disadvantage
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of this method is the computational cost for a single image. In [5], a illumination
normalization is proposed for uncontrolled conditions which requires a color image
together a 3D range image.
We developed a new method for illumination correction in [23] which used only a
single grey level image, but this method improved the recognition for face images
taken under uncontrolled conditions. During these experiments, we discovered
that both our method and [110] have problems modelling shadow areas which still
contain some reflection. This often occurs in face images taken under uncontrolled
conditions. Furthermore, we observed that the found surface normals were not
restricted by the geometrical constrains. In this chapter, we tried to solve these
issues by improving our previous method.

7.2 Illumination Correction Method

7.2.1 Phong Model

To model the shadow areas that contain some reflections, we use the Phong model,
which explains these areas using the ambient reflection term. In our previous work
and in [110], the Lambertian model with a summed error term was used to model
the shadows. This however fails when both the intensities of the light source on the
face and the reflections in the shadow areas vary. The Phong model in combination
with a shadow expectation is able to model these effects. If we assume a single
diffuse light source l, the Phong model is given by the following Equation:

b(p) = ca(p)ia + cd(p)n(p)T slid + specular reflections
�� ��7.1

The image b(p) at location p can be modelled using three parts namely: the
ambient, diffuse and specular reflections. The ambient reflections exist of the
albedo ca(p) and the intensity of the ambient light ia. The ambient reflections are
still visible if there is no diffuse light, for instance in shadow areas which are not
entirely dark. The diffuse reflections are similar to the Lambertian model, where
the surface normals n ∈ R3 define the direction of the reflection and together with
the albedo cd(p) give the shape h(p) = cd(p)n(p)T . The diffuse light can be
modelled by a normalized vector s ∈ R3, which gives the light direction and the
intensity of the diffuse light id. The final term contains the specular reflections,
which explain the highlights in the image, but because this phenomenon is usually
only present in a very small part of the image we will ignore this term.
The shadow can be modelled as a hard binary decision. If a light source can
not reach a certain region, it makes a shadow. This holds expect for areas which
contain the transition between light and shadow. Using a 3D range map of a
face, we can compute the shadow area given a certain light direction using a ray
tracer. Computing these shadow areas for multiple images, allows us to calculate
an expectation of shadow el(p) on the position p for the light directions sl. This
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gives us a user independent shadow model given the light direction.

b(p) = c(p)ia + c(p)n(p)T slidel(p)
�� ��7.2

b = cia +Hslid ? el
�� ��7.3

In Equation 7.2, we simplified the Phong model and we added the expectation
term el(p) to model shadows. We also use the same albedo term for ambient and
diffuse illumination, which is common practice [20]. In Equation 7.3, we vectorized
all the terms, where the ? denotes the Cartesian product. Our goal is to find the
face shape and the light conditions given only a single image.

7.2.2 Search strategy for light conditions and face shape

An method to estimate both the face shape and the light conditions is to vary one
of the variables and calculate the others. In our case, we chose to vary the light
direction allowing us to calculate the other variables. After obtaining the other
variable, e.g. light intensity, surface and albedo, we use an evaluation criteria to see
which light direction gives the best estimates. The pseudo-code of our correction
method is given below:

• For a grid of light directions sl

– Estimate the light intensities ia and id

– Estimate the initial face shape

– Estimate the surface using geometrical constrains and a 3D surface
model

– Computing the albedo and its variations

– Evaluation of the found parameters

• Refine the search to find the best light direction.

• Reconstruct a face images under frontal illumination.

We start with a grid where we vary the azimuth and elevation of the light direction
with 20 degrees. The grid allows us to locate the global minimum, from there we
can refine the search using the downhill simplex search method [81] to find the
light direction with an accuracy of ±2 degrees. Using the found parameters like
light conditions and face shape, we can reconstruct a face image under frontal
illumination, which can be used in face recognition. In the next sections, we will
discuss the different components mentioned in the pseudo-code.

7.2.3 Estimate the light intensities

Given the light direction sl and the shadow expectation el(p), we can estimate
the light intensities using the mean face shape h(p) and mean albedo c(p). The
mean face shape and albedo are determined using a set of face images together
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with there 3D range maps. This gives us the following linearly solvable equation,
allow us to obtain the light intensities {ia, id}:

{ia, id} = arg min
{ia,id}

∑
p

‖b(p)− c(p)ia − h
T
slidel(p)‖2

�� ��7.4

Because this is an over-determined system, we can use the mean face shape and
mean albedo to estimate the light intensities, which still gives a very accurate
estimation. However, this might normalize the difference in intensity of the skin
color. If the light intensities are negative, we skip the rest of the computations.

7.2.4 Estimate the initial face shape

To estimate the initial face shape given the light conditions {sl, el(p), ia, id}, we
use the following two assumptions: Firstly, the Phong model must hold, which
gives us the following equations:

b(p) = c(p)ia(p) + hx(p)sx,lidel(p) + hy(p)sy,lidel(p) + hz(p)sz,lidel(p)
�� ��7.5

Secondly, the face shape should be similar to the mean face shape. This can be
measure by taking the Mahalanobis distance between the face shape h(p) and the
mean face shape h(p). Using Lagrange multipliers, we can minimize the distance
with Equation 7.5 as a constrain. This allows us to find an initial face shape
ĥ(p), which we will improve in the next steps using a surface model together with
geometrical constrains.

7.2.5 Estimate surface using geometrical constrains and a

3D surface model

Given an estimate of the face shape ĥ, we want to determine the surface z, which
is a depth map of the face image. Given a set of 3D range images of faces, we
can calculate depth maps {zt}Tt=1 and we can obtain the mean surface z and a
covariance matrix Σz. Using Principal Component Analysis (PCA), we computer
the subspace by solving the eigenvalue problem:

Λz = ΦTΣzΦ ẑ = z +
K∑
k=0

Φkuz(k)
�� ��7.6

where Λz are the eigenvalues and Φ are the eigenvectors of the covariance matrix
Σz, which allows to express the surface in variations uz for the mean surface z.
We also know that hxz(p) = hx(p)

hz(p) = ∇xz(p) and hyz(p) = hy(p)
hz(p) = ∇yz(p) holds,

where ∇x and ∇y denote the gradient in x and y direction. This allows us to
calculate the variations of the surface uz using the following equation:

uz = arg minuz ||∇xz +∇xΦuz − ĥxz||2 + ||∇yz +∇yΦuz − ĥyz||2
�� ��7.7
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The surface ẑ can be found using Equation 9.3 and from this surface we can also
find the surface normals n(p). In this case, the surface normals are restricted by
geometrical constrains. Using only the geometrical constrains does not have to
be sufficient to determine the face surface, therefore, we use the surface model to
ensure the convergence.

7.2.6 Computing the albedo and its variations

In the previous sections, we obtained the surface normals n(p) and the illumina-
tion conditions {sl, el(p), ia, id}. This allows us to calculate the albedo c from
Equation 7.2. In order to find out whether the albedo is correct, we also create a
PCA model of the albedo. Given a set of face images together with their 3D range
maps, we estimated the albedo, see [23]. Vectorizing the albedo {ct}Tt=1 allows us
to calculate a PCA model and find the variations uc, which is also used for the
surface model. Using the variations uc, we calculated also a projection of albedo
ĉ to PCA model. The projection ĉ does not contain all details necessary for the
face recognition. For this reason, we use the albedo ĉ from the PCA model in the
evaluation criteria, while we use the albedo c obtained from Equation 7.2 in the
reconstructed image.

7.2.7 Evaluation of the found parameters

Because we calculate the face shape for multiple light directions, we have to de-
termine which light direction results in the best face shape. Furthermore, the
downhill simplex algorithms also needs an evaluation criteria to be able to find
the light direction more accurately. Using the found light conditions and face
shape, we can reconstruct an image br which should be similar to the original
image. This can be measured using the sum of the square differences between the
pixels values. Minimizing this may cause overfitting of our models at certain light
directions. For this reason, we use the maximum a posterior probability estimator
given by P (uc,uz|b), which can be minimized by the following equations, see [20]:

E =
1
σb

∑
p

‖b(p)− br(p)‖2 +
K∑
k=1

u2
z(k)
λz(k)

+
J∑
j=1

u2
c(j)
λc(j)

�� ��7.8

In this case, σb controls the relative weight of the prior probability, which is the
most important factor to minimize. λz and λc are the eigenvalues of the surface and
albedo. The light directions that minimizes Equation 7.8, give us the parameters
from which we can reconstruct a face image with frontal illumination.

7.3 Experiments and Results

We correct for illumination by estimating both the illumination conditions and the
face surface. In this section, we will show some of the estimate surfaces together
with their corrected images. The main purpose of the illumination correction is
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to improve the performance of the face recognition method. Our goal is therefore
to demonstrate that our face recognition method indeed benefits from the im-
provement in the illumination correction. For this purpose, we use the FRGCv1
database where we have controlled face images in the enrollment and uncontrolled
face images as probe images.

7.3.1 3D Database to train the Illumination Correction Mod-

els

For our method, a database is needed that contains both face images and 3D
range maps to compute the surface, shape, shadow and albedo models. In this
case, we used the Spring 2003 subset of Face Recognition Grand Challenge (FRGC)
database, which contains face images together with their 3D range maps. These
face images contain almost frontal illumination and no shadows, making this subset
of the database ideal to compute the surface and albedo. The exact method to
retrieve the albedo is describe in [23].

7.3.2 Recognition Experiment on FRGCv1 database

Figure 7.1: Reconstructed frontal illuminated face images and surfaces

- First row contains the original images from the FRGCv1 database, second and

third row show the resulting surface, the fourth row depicts the reconstructed frontal

illumination

The FRGCv1 database contains frontal face images taken under both controlled
and uncontrolled illumination conditions as is shown in Figure 7.1. The first image
in Figure 7.1 is taken under controlled conditions, while the other images are taken
under uncontrolled conditions. For the first person, we show that our method is
able to correct for different unknown illumination conditions. In case of the last
image, we observe more highlighted areas directly under the eyes, this is caused
by the reflection of the glasses which are not modelled by our method.
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In order to test if this illumination correction method improves the performance
in face recognition, we performed the following experiment to see if illumination
conditions are removed in the images taken under uncontrolled conditions. In
this case, we use the images with uncontrolled illumination as probe image and
make one user template for every person with the images taken under controlled
conditions. To train our face recognition method, we randomly divided both the
controlled and uncontrolled set of the FRGCv1 database into two parts, each
containing approximately half of the face images. The first halves are used to
train the face recognition method. The second half of the controlled set is used to
compute the user templates, while the second half of the uncontrolled set is used
as probe images. We repeat this experiment 20 times using different images in
both halves to become invariant against statistical fluctuations.

Figure 7.2: ROCs of illumination correction methods on the FRCGv1

database - ROC on the FRGCv1 database with a comparison to our previous work

[23] and to work of Sim et al [110]

The Receiver operating characteristic (ROC) in Figure 7.2 is obtained using
the PCA-LDA likelihood ratio [126] for face recognition. The first three lines in
Figure 7.2 are also stated in our previous work [23], where the last line depicts
the improvements obtained using the method described in this chapter. The ROC
curves in Figure 7.2 shows only the improvements due to illumination correction.
In the case of our previous method, the False Reject Rate (FRR) becomes signif-
icantly better at a False Accept Rate (FAR) smaller than 1%, while the last line
is overall better. Most other illumination correction methods like [5; 139] evalu-
ated their method only on a database create in a laboratory or do not perform a
recognition experiment, which makes the comparison with other methods difficult.
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7.4 Discussion

In figure 7.1, we observe that the phenomenon, where the shadow areas are still not
completely dark, often occurs in uncontrolled illumination conditions. Improving
our model on this point gave also improvements in the recognition results, which
was the main purpose of our illumination correction. We choose to ignore other
illumination effects like specular reflections, because we expected a small perfor-
mance gain in face recognition and a large increase in computation time.
The second improvement is a restriction to the face shape by computing the surface
instead of the surface normals, which also slightly improved the face recognition re-
sults. Another benefit is that we obtained an estimation of the surface of the face,
which might be handy in other applications. In our research, the focus has not
been on the quality of the estimated surfaces. Although we expect that this can be
an interesting result to improve for instance 3D face acquisition and recognition.

7.5 Conclusion

We present two major improvements for our illumination correction method for
face images, where the purpose of our method is to improve the recognition results
of images taken under uncontrolled illumination conditions. The first improvement
uses a better illumination model, which allows us to model the ambient light in
the shadow areas. The second improvement computes an estimate of the surface
given a single face image. This surface gives us a more accurate face shape and
might also be useful in other applications. Because of both improvements, the
performance in face recognition becomes significantly better for face images with
uncontrolled illumination conditions.
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8
C O M B I N I N G I L L U M I N AT I O N N O R M A L I Z AT I O N M E T H O D S

8.1 Introduction

One of the major problems with face recognition under uncontrolled conditions
is the illumination variation, which is often larger than the variations between
individuals. Using illumination normalization methods, we want to correct the
illumination variations in a single face image. In the literature, several methods
have been proposed to make face images invariant for illumination. These methods
can be divided into two categories. The first category normalizes the face image by
applying a preprocessing step on the pixel values using information from the local
region around that pixel. Examples of these approaches are Histogram Equal-
ization [105] or (Simplified) Local Binary Patterns [55],[121]. These approaches
are direct and simple, but fail to model the global illumination conditions. The
second category estimates a global physical model of the illumination mechanism
and its interaction with the facial surface. In this category falls for instance the
Quotient Image [107], Spherical harmonics [14], 3D morphable models [20]. These
methods are able to estimate the global illumination condition, but are also more
complicated and require training to model the illumination conditions.
In practise, we have observed that both categories of illumination normalization
algorithms have their advantages and disadvantages. The methods in the first
category have problems with regions which are not illuminated because of hard
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shadows. These shadow regions have a large signal to noise ratio which makes
the correction for local methods almost impossible. However, these local methods
work well on the illuminated parts of the image and on lightly shadowed (soft
shadows) areas. The second category is able to reconstruct the parts with hard
shadows, using statistical models. But our current implementation of a global
method does not model face variations like glasses and expressions. To summa-
rize, the local methods work well on illuminated part of the image, also the parts
which are not modelled by the global methods. The global methods are however
able to reconstruct parts which contain hard shadows, which is not possible using
a local method. By combining methods from both categories, we aim to improve
the performance in face recognition under different and uncontrolled illumination
conditions.
Combining the two different illumination correction methods can be done on three
different levels, namely at the feature level, the score level and the decision level.
We will concentrate on the last two levels of fusion because of its simplicity. To
achieve this, the preprocessed images are individually classified and the scores are
fused using score-level [44], decision-level fusion [122] and a combination of both
these methods named hybrid fusion [120].
This chapter is organized as follows, in Section 2 we describe the two illumination
correction algorithms. Section 3 explains how we combine these algorithms for
face recognition. In Section 4, we show the experiments and results and Section 5
gives the conclusions.

8.2 Illumination normalization

For illumination normalization, we use two methods which come from different
categories. The method from the first category is the Local Binary Patterns [86]
preprocessing, where different papers [55],[121] claim its invariance to illumination
conditions. In the second category, we use the illumination correction approach in
[23], which is able to correct illumination variations using a single 2D facial image
as its input. If we compare this method with [107] or [110], it is more advanced
using a 3D shape model and a shadow and reflection model, but in comparison
with 3D morphable models [20] it is still computational efficient. In the following
subsections, we describe both methods in more detail.

8.2.1 Local Binary Patterns

Local Binary Patterns method (LBP) is proposed in [86] and are often used as
features in face recognition. The standard LBP give the 3× 3-neighbors the value
0 if they are smaller than the center pixel value and 1 otherwise. This result in a
8 bit string, which represents the pattern at the center point. We can also obtain
from it a decimal representation between 0 and 255. LBP is a relative measure
which makes it invariant against monotonic gray-scale transformations. A big
range of illumination changes consist of monotonic gray-scale transformations in
large regions in the image.
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There are also extensions to the original LBP, which use a bigger radius and more
spacing for the neighbors or use a different weighting scheme for the different bits.
In this chapter, we use the simplest LBP as preprocessing to obtain the illumina-
tion invariant images, i.e. based on a 3× 3-neighborhood.

8.2.2 Model-based Face Illumination Correction

The method from the second category is described in Chapter 6 and published
in [23]. It uses a global method based on the Lambertian Reflectance model and
subspace methods to correct for illumination in facial images. Examples of images
corrected with this method are shown in Figure 8.1. This method reconstructs a
frontal illuminated facial image based on the input image, instead of creating a
illumination free feature vector.

(a) FRGCv1 database (b) Yale B databases

Figure 8.1: Examples of corrected face images - Face Images from the Yale

B database and FRGCv1 database, upper without correction, middle preprocessed

with LBP, lower preprocessed with Model-based Illumination Correction

8.3 Fusion to improve recognition

In the previous section, we proposed two methods to obtain illumination invariant
face images. The resulting images of these methods can be seen in Figure 8.1.
In this section, we combine these methods to improve the face recognition under
different illumination conditions. We train two face classifiers, one with the LBP
and one with Model-based Face Illumination correction. The face classifier (log-
likelihood ratio after a feature reduction using a PCA and LDA transformation)
gives us a similarity score, which we are able to fuse. For fusion, we use the
following methods: SUM rule score-level fusion [44], OR rule decision-level fusion
[122] and hybrid fusion [120].

117



8. COMBINING ILLUMINATION NORMALIZATION METHODS

In the case of score-level fusion, we can take the joint likelihood ratio, which in our
case means that we can sum the scores obtained from the log-likelihoods ratios.
This gives us the advantage that we do not have to estimate the different density
functions or perform a normalization step to the similarity scores. This method
of fusion, we denote as SUM rule fusion.
Although theoretically, score-level fusion should achieve the optimal performance,
it is not very robust to outliers. For this reason, we also use decision-level fusion
with the OR rule to combine the reciever operation characteristics (ROC). The
ROC is determined from the similarity scores of the face classifiers and can be
obtained by varying the threshold, thus producing a different false reject rate β
and false accept rate α = 1 − pr. This specific pair (α, β) is called an operation
point, which corresponds to a threshold t in the similarity scores. In the case of
fusion, there can be N classifiers and each is characterized by its ROC, pr,i(βi), i =
1, ..., N . By assuming that our classifiers are independent, the final performance
of the OR rule can be estimated as β =

∏N
i=1 βi and pr(β) =

∏N
i=1 pr,i(βi). By

searching for the optimal operation points, the fusion with the OR rule can be
formulated as:

p̂r(β) = max
βi|

∏N
i=1 βi=β

{ N∏
i=1

pr,i(βi)
} �� ��8.1

We can prove that the estimated p̂r(β) is never smaller than any of the compo-
nents pr,i(β), i = 1, ..., N at the same β. Because we do not have the ROC p̂r(β)
in analytical form, we estimate a ROC from evaluation data. The ROC p̂r(β) is
therefor characterized by discrete values and can be solved numerically [122].
The hybrid fusion is a combination between score-level fusion and decision-level
fusion. In hybrid fusion, we first perform the SUM rule score-level fusion to com-
bine the ROCs of both classifiers. The ROCs of both classifiers together with ROC
given by the SUM rule are then fused using OR rule decision-level fusion. Using
hybrid fusion, we hope to combine the advantages of score-level fusion and the
decision-level fusion.

8.4 Experiments and Results

The purpose of the illumination corrections is to improve the verification rates in
face recognition. We performed a recognition experiment on the Yale B databases
(the Yale B [48] and extended Yale B [72] database), which contain face images
under different labelled illumination conditions created in a laboratory. This ex-
periment tests the ability to make illumination invariant images under all kinds
of illumination conditions (also with hard shadows). We also perform an experi-
ment on the Face Recognition Grand Challenge version 1 (FRGCv1) database [90]
which contain face images taken under controlled and uncontrolled conditions.
This experiment allows us test the ability to correct the uncontrolled illumination
conditions and compare them to the controlled images in the gallery.
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Figure 8.2: Score Plot and ROC on the Extended Yale B database - Score

Plot and ROC of the two illumination correction methods on the Extended Yale B

database, ROCs also contains the fusion results and the results without illumination

correction

8.4.1 The Yale B databases

The Yale B databases are created to model and test the effects of illumination on
face images. In our correction algorithm, we use the Yale B databases to obtain
our error model for shadows and reflections. Because we trained our error model
on the Yale B databases, we performed a leave one person out experiment for the
Model-based Illumination Correction.
In our face recognition experiment, we correct all the face images with both cor-
rection methods. We use only the face images with a azimuth and elevation angle
below ±90 degrees in this experiment. For face recognition, we trained on the
face images of thirty persons and performed a one-to-one verification experiment
on the remaining eight persons, leaving out the face images taken under similar
illumination conditions. We repeated this experiment until we compared the face
images of all person in the Yale B databases with each other. To train the fusion
methods, we used the scores from the Yale B database (10 persons). For testing,
we used the scores of Extended Yale B database (29 persons). In Figure 8.2, we
show all the results on the Extended Yale B database.
The experiment which we perform on the Yale B databases is a difficult experi-
ment, because sometimes two images illuminated from opposite positions are com-
pared. We observe from Figure 8.2(b) that the Model-based Illumination Correc-
tion works better at a FAR < 25% than the Local Binary Patterns. By fusing
the two methods, we can improve the recognition results significantly. In Figure
8.2(a), we observe that a diagonal line is probably the best separation between
imposter scores and genuine scores. This explains why the SUM rule performs
slightly better than the OR rule and hybrid fusion (see Figure 8.2(b)).
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also contains the fusion results and the results without illumination correction

8.4.2 The FRGCv1 database

The FRGCv1 database contains frontal face images taken under both controlled
and uncontrolled conditions. In our experiment, we randomly divided the uncon-
trolled and controlled face images into two parts, each containing approximately
half of the face images. We used the first halves of both sets to train our face clas-
sifiers and the fusion methods, the second half of the controlled images are used for
the enrollment of the one user template for every person and the second half of the
uncontrolled images are used as probe images. We repeat this experiment 20 times
using different random splits of the database to become invariant for statistical
fluctuations. This experiment simulates a video surveillance scenario, where we
usually have a gallery of high quality images, but the probe images are obtained
under uncontrolled conditions. Both our illumination correction algorithms pre-
process all the images, also the controlled images. The recognition results are
shown in Figure 8.3.
Although, we have in this experiment less extreme illumination conditions, there
are also other challenges in the FRGCv1 database beside illumination, like ex-
pressions and out of focus images. From Figure 8.3(b), we observe that the Local
Binary Patterns work better on this database than the Model-based Illumination
Correction. The main reason for this difference is that Model-based Illumination
Correction has a larger amount of outliers, due to glasses and expressions (see also
Figure 8.3(a) where relatively many genuine scores (circles) have larger negative
values for the Model-based Illumination Correction). Using the simple SUM rule
to combine the face classifiers already improves the overall recognition results. In
figure 8.3(b), we observe that the recognition results of the OR rule are similar to
the sum rule, and the hybrid fusion clearly outperforms the other fusion methods
on this database.
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8.5 Conclusions

We combine two different methods to correct for illumination in face images and
obtain better results in face recognition. We show that both methods are able to
correct for illumination in face images. The Local Binary Patterns method corrects
pixel values based on the local neighborhood in the image. This method shows
good results on uncontrolled images, but cannot recover large regions with hard
shadows. The Model-based Illumination Correction shows that it can deal with
these shadow regions, but it has problems in uncontrolled conditions which con-
tain unmodelled effects, like glasses and expressions. Because both methods have
different strengths and weaknesses, we combine the illumination normalization
methods using fusion. We use three different fusion methods: SUM rule score-
level fusion, OR rule decision-level fusion and hybrid fusion. The performance of
the simple SUM rule fusion already improves the results significantly and works
best for large variations in illumination. The performance of the OR-rule is in both
experiments slightly worse than the SUM rule. The hybrid fusion, which tries to
combine the advantages of both fusion methods, gives the largest improvement in
performance when we correct for uncontrolled illumination conditions occurring
in a video surveillance environment.
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9
V I RT U A L I L L U M I N AT I O N G R I D FO R C O R R E C T I O N O F
U N C O N T RO L L E D I L L U M I N AT I O N I N FAC I A L I M AG E S

9.1 Introduction

One of the major problems of face recognition in uncontrolled conditions is the
variation caused by illumination. Our contribution is an illumination correction
method that is capable of handling multiple light sources. The purpose is to
correct for multiple light sources in a single facial image. Correcting for illumi-
nation effects in images taken under uncontrolled illumination conditions is more
challenging than the standard experiments for face illumination, which address
removing illumination from facial images recorded in laboratory conditions (Yale
B database, CMU-PIE database), illuminated with a single light source. In or-
der to correct for uncontrolled illumination conditions, we try to reconstruct the
illumination conditions. The requirements of the fontal illuminated facial image
are that it removes the illumination variations without introducing artifacts, while
preserving the identity information for recognition. The illumination correction
method is used as an independent preprocessing method. The advantage is that
the generated frontal illuminated facial image can be the input of various face
recognition methods and allows us to use a single gallery image in face recogni-
tion.
Several methods have been proposed to correct for illumination variations in facial
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images. We will categorize them based on two criteria. The first criterion is the
complexity of the reflectance model. We discriminate between reflectance models
that use a weak assumption about illumination, the Lambertian reflectance model,
a reflectance function based on the Lambertian assumption (for example Spheri-
cal Harmonics) and advanced reflectance models (Phong, Torrance-Sparrow). The
second criterion is the complexity of the face model. There are methods, which
use no model of the face, other methods make models of the appearance, some use
an implicit model of the 3D surface and texture, while other methods have ap-
plied an explicit model of the 3D surface and texture. In Figure 9.1, we categorize
illumination correction methods based on these criteria and divide them into four
groups.
The first group (bottom-left oval of Figure 9.1) contains methods that do not need
a face model and do not assume an explicit reflectance model. These methods
usually perform preprocessing based on the local regions, for example Histogram
Equalization [105] or (Simplified) Local Binary Patterns [55; 121]. Other methods
like Gross et al [50] and Tan et al [119] use the local region around the pixel to
perform illumination correction based on some properties of the reflectance. The
Self Quotient Image [128] uses the local region for correction based on the Lam-
bertian reflectance model without the need of a model of the face.
There are also methods that learn the behaviour of reflectance and so become
invariant for illumination in the face. These methods use only the appearance
learned for a bootstrap database with different labeled illumination conditions.
Note that they do not assume a reflectance model (center-left oval of Figure 9.1).
Tensorfaces [125] can be trained to handle multiple variations like expression, illu-
mination and pose using multidimensional subspace models. This is extended in
[71] with a model which also include 3D shape parameters, but the illumination is
still modelled using subspace models. In [33], a subspace model is used to compute
Intrinsic Images, separating the image in reflectance and illuminance. Subspace
models that learn the behaviour of the reflectance on faces also allow correction for
this reflectance. However, these methods usually depend heavily on a bootstrap
database with varying illumination conditions. This makes it difficult to predict
whether these methods are robust to unseen conditions, which is mostly the case
with uncontrolled conditions.
In face illumination correction, many correction methods use both assumptions on
the illumination reflectance as well as implicitly taking into account the 3D surface
and texture, usually by estimation of surface normals and albedo (center-right oval
of Figure 9.1). An example is the Quotient Image [107] which estimates illumina-
tion using the Lambertian reflectance model. This method computes a quotient
image based on the assumption that faces have a similar surface. A estimate of the
surface is then obtained from a bootstrap set of faces. In [48], an illumination cone
can be determined from three images illuminated with independent light sources.
Sim et al [110] proposed a method based on the Lambertian reflectance model
which corrects for illumination in a single facial image. This method uses a large
bootstrap database containing many illumination variations in order to correct for
these conditions. Spherical Harmonics are proposed in both [14] and [94] which
give an approximation of a 9D linear subspace under all possible Lambertian il-
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luminations. Zhang et al [139],[140] proposed a method to obtain the Spherical
Harmonics for a single image illuminated under unknown illumination by using a
bootstrap database to model shadows and reflections. In [72], a configuration of
nine points of light (9PL) is determined to construct a linear subspace for face
recognition. In face recognition, nine gallery images illuminated or rendered un-
der predefined conditions are necessary to perform face recognition, which requires
specialized data acquisition of the gallery images. Zhou et al [144],[143] span a
linear subspace using object-specific albedo-shape matrices. They find an illumi-
nation free identity vector by optimizing both identity vector and illumination
conditions to best resemble the input image. This gives them an illumination free
identity vector instead of an estimate of the 3D surface and albedo, from which
we render the frontal illuminated facial image. Because Zhou et al’s method is
the closest to ours, we have chosen to point out other differences with Zhou et al’s
method throughout the text.
The last group in Figure 9.1 (top-right oval) differs from other methods because
it uses 3D face models. The 3D morphable models [20] are among the first to use
the 3D information of faces, where PCA models are used for both the 3D shape
and texture. Using the Phong reflectance model for illumination, a parameter
optimization method is used to render a facial image which is close to the input
image. In [111], Smith et al propose a statistical model for normal maps to ac-
curately estimate the surface and in [112] the same authors use a subspace model
of the depth map as a geometrical constraint. In [23], we use a shape model in
combination with the Lambertian reflectance model to correct for illumination of
a single light source. In [27], we have improved this method by modelling both
ambient and diffuse illumination and estimated the depth maps. We observe that
most illumination correction methods have difficulties in modelling multiple light
sources, especially when they cause some reflectance in shadow areas.

This paper is organized as follows: In Section 9.2, we describe the illumination
correction method that is able to deal with multiple light sources. We first intro-
duce the necessary reflectance and face models which then allows us to calculate
a reconstruction of the face shape iteratively. In Section 9.3, we describe exper-
iments and the results and fuse our global illumination correction with a local
illumination correction method. We will discuss the results obtained with our
method in Section 9.4 and finally provide conclusions in Section 9.5.

9.2 Method

9.2.1 Reflectance model

In order to correct for the illumination in a single facial image, we use a reflectance
model for the behaviour of illumination. Because of our focus on uncontrolled illu-
mination conditions, we assume that faces are illuminated by multiple light sources.
We use the Lambertian reflectance model, which gives a good approximation of
the reflectance behaviour on the surface of faces [48]. The image intensity b ∈ R

at a certain position p = {x, y} in the image can be described by the following
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illumination correction methods: separating four major groups based on two
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equation:

b(p) = ρ(p)
∑
l

max(0,n(p)T slil)
�� ��9.1

where the face shape h(p) = ρ(p)n(p)T consists of the surface normals n ∈ R3,
the albedo of the surface given by ρ ∈ R and the max operation allows us to
model attached shadows. A normalized vector s ∈ R3, defines the direction of
the illumination. The intensity of the light is given by i ∈ R. Instead of finding
multiple light directions in a continuous domain, we use L discrete directions,
assuming that a light source in continuous direction can be created using multiple
light sources in discrete directions. The Lambertian reflectance model in Equation
9.1 in this form cannot model cast shadows on the face surface. There are two
kinds of shadows on faces. The first kind is called ”attached shadows”. In this
case, the Lambertian reflectance model does not hold because the normal is not
directly facing the light source. This results in a negative image intensity, which
can be easily detected and corrected by replacing the negative value by zero. The
second kind of shadow is due to the geometry of the face that blocks the light
source, these are called ”cast shadows”. These shadows are harder to calculate
because we need to perform ray tracing. Shadows can be seen as hard binary
decisions. This definition holds with the exception of areas, which contain the
transition between light and shadow areas. We propose to model shadows in the
Lambertian reflectance model using a weight el(p), which is linked to the light
direction. This weight is in fact the expectation el ∈ [0, 1] that a shadow occurs
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at position p given a certain light direction l:

b̂(p) = ρ(p)n(p)T
∑
l

slilel(p)
�� ��9.2

The illumination conditions for a certain position p can then be described by
v(p) =

∑
l slilel(p). In case of an attached shadow, el = 0, thus making the max

operation in Equation 9.1 unnecessary. This user-independent expectation can be
used as weight, giving smooth values in the areas which contain the transition
between light and shadow, while we have a hard binary decision in area that
certainly contain shadows. This expectation is determined from a training set
of multiple surfaces, where we calculate for a single surface a binary decision
that a shadow occurs at position p give a light direction l using a ray tracer.
The expectation is obtained by taking the mean over all the binary values. We
determine the expectation at all positions p and for all L light directions in the
grid. Apart from the expectation, we also determine the variations σ2

l (p) at every
position, which we use for the albedo estimate, described in Section 9.2.7.
The goal of our correction method is to find the illumination conditions v(p)
and the face shape h(p) that best explain our input image b(p). This method
minimizes the distance between the input image b(p) and an estimate based on
the models b̂(p), in our case obtained from Equation 9.2. Note that multiple
combinations of light conditions and face shapes can result in the same image based
on Equation 9.2. For this reason, it is necessary to use domain specific knowledge
to constrain the shape from shading problem. This domain specific knowledge is
enforced using subspace models of the face shape (Section 9.2.2). The subspace
models also allow us to estimate the face shape (surface and albedo). By obtaining
the face shape, we can easily compute facial images under frontal illumination by
replacing the v(p) for vfrontal(p). Of course, it is also possible for us to illuminate
the face with other illumination conditions using our virtual illumination grid.

9.2.2 Face Shape and Albedo Models

The reflectance of the light depends on the object that is illuminated. Faces are
difficult to model, but multiple techniques have been proposed in the literature to
achieve this. Zhou et al [143] use a linear subspace of object-specific albedo-shape
matrices as illumination free term containing both albedo and surface normals.
In VIG, we have chosen to split the illumination free terms in order to create
two separate linear subspaces. This has the advantage of allowing us to perform
an estimate of the surface (Section 9.2.6). For the subspace models, we use a
vectorized representation of albedo ρ and surface z (depth map of the face), instead
of a notation for every position p in an image. From a set of surfaces {zm}Mm=1, we
obtain the mean surface z and a covariance matrix Σz. This allows us to compute
a subspace by solving the eigenvalue problem, obtaining the eigenvalues Λz and
the eigenvectors Φz = [φ1, . . . ,φN ]T of the covariance matrix Σz.

ẑ = z + Φzuz

�� ��9.3
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Given that we are able to obtain the variations of the surface uz, we can estimate
a surface ẑ using Equation 9.3. A similar PCA model is obtained for the albedo.
In order to take into account the correlation between depth maps and albedo,
which is probably present, we combine both PCA models, creating the following
concatenated vector:

yt =
(
Wzuz

uρ

) �� ��9.4

where Wz is a diagonal weighting matrix, allowing difference in weight between
depth maps and albedo. This method of combining both PCA models is similar
to the approach used in the Active Appearance Model [38]. Because albedo and
depth maps cannot be compared directly, we measure the effects in appearance of
changing uz and uc using the RMS error. This gives us a relative weight between
albedo en depth maps changes. We apply PCA to the vector yt, giving us a model
which contains both depth maps and albedo:

yt = Φtut

�� ��9.5

In this case, Φt = [φ1, . . . ,φK ]T are the eigenvectors and yt is already zero
mean allowing us to control the depth map and shape in the following way:

ẑ = z + ΦzW
−1
z Φtzut

�� ��9.6

ρ̂ = ρ+ ΦρΦtρut

�� ��9.7

where

Φt =
(

Φtz

Φtρ

) �� ��9.8

Several papers already have used separate PCA models for texture and shape in
order to correct for illumination [20]. However, they usually do not take into
account the correlation between the depth map and the albedo. Using this cor-
relation has the advantage of prohibiting improbable combinations of depth maps
and albedo to explain appearances in images.

9.2.3 Illumination Correction Method

Given a single image, we want to estimate the face shape and the illumination
conditions, using both the Lambertian Reflectance model (Equation 9.2) and the
PCA models of surface and albedo (Equations 9.6 and 9.7). Of course, we can
perform an exhaustive search, as in the 3D morphable models where optimized
code can perform such an operation with 4.5 minutes [19]. Instead, we chose an
iterative scheme, to first estimate the illumination conditions and then find the
model parameters of the depth map and surface. Using the found depth map and
albedo, we can then improve the accuracy of the illumination conditions, which
in turn improves the depth map and albedo. We repeat these steps several times
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(average of 5 iterations). Because the most time consuming computations are
linear, this method can be computed much faster than the 3D morphable model.
The pseudo-code of our correction method is given below:

• Repeat

– Estimate illumination conditions (Section 9.2.4)
– Estimate crude face shape (Section 9.2.5)
– Estimate the surface parameters (Section 9.2.6)
– Estimate the albedo parameters (Section 9.2.7)

• Until convergence (based on evaluation of the obtained illumination condi-
tions, surface and albedo (Section 9.2.8))

• Refinement of the albedo (Section 9.2.9)

We will discuss the different components in the following sections.

9.2.4 Estimation of the illumination conditions

Given the image, we want to estimate the illumination conditions in the image.
Because we assume a grid of discrete light directions, we have to determine the
intensity of the light for every point in the grid in order to calculate the global
illumination conditions. To obtain the illumination conditions, we use an estimate
of the face shape h̃(p). In the first iteration, we use the mean face shape h(p) to
obtain the light intensities, while in the next iterations, we use the estimated face
shape from the previous iteration. The light intensities are calculated as follows

i = arg min
i

∑
p

‖
L∑
l=0

h̃(p)T slilel(p)− b(p)‖2

where il ≥ 0
�� ��9.9

This can be solved using a constrained linear least square solver where the
light intensity cannot be negative. Because Equation 9.9 is an overcomplete sys-
tem, even using a relatively poor estimate of the face shape h̃, still gives acceptable
results. The accuracy of the illumination conditions depends also on the config-
uration of the light sources in the grid. We have experimented with two grids
by varying the azimuth and elevation angle by 10 or 20 degrees from -80 to 80
degrees. We have observed that the results of both grids are very similar, while
the computations with a grid of 10 degrees take much longer. For this reason, we
decide to use the grid of 20 degrees for all experiments. In [72], a configuration of
nine points of light (9PL) at predefined locations is used to obtain an illumination
free representations. In VIG, however, we want to obtain a reconstruction of the
surface and the albedo, for which the large illumination grid is necessary to ac-
curately model cast shadows. With the 9PL methods, accurate modelling of cast
shadows is not possible, which will result in artifacts in the reconstruction.
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9.2.5 Estimation of the crude face shape

Given the image and the illumination conditions, the goal is to obtain the face
shape. A crude estimate of the face shape is necessary in order to improve the
face shape using the linear subspace models. To obtain the crude estimate, we
use the following two assumptions. The first assumption is that the Lambertian
reflectance model (Equation 9.11) holds. The second assumption is that the face
shape should be similar to the mean face shape. This can be measured by taking a
distance between the face shape h(p) and the mean face shape h(p). In our case,
we have taken the Mahalanobis distance between two vectors, where Σh(p) is the
covariance matrix of the face shape at location p obtain from a training set.

ĥ(p) = arg min
h(p)

(h(p)− h(p))TΣ−1
h(p)(h(p)− h(p))

�� ��9.10

where b(p) = h(p)Tv(p)
�� ��9.11

We can minimize the Mahalanobis distance (Equation 9.10) with the Lambertian
reflectance model (Equation 9.11) as a constraint using Lagrange multipliers. This
gives us a crude estimate of face shape ĥ, which we will improve in the following
sections.

9.2.6 Estimation of the surface

Given an estimate of the face shape ĥ(p), we further improve this estimate by
applying geometrical constrains. By calculating a depth map from the crudely
estimated face shape, we can automatically enforce the geometrical constrains.
The PCA model allows us to introduce domain specific information, which ensures
convergence of this shape from shading problem. In the method of Zhou et al
[143], integrability and symmetry constrains are used in generalized photometric
stereo to recover the shape and albedo, using multiple face images under different
illumination conditions. For Zhou et al to become invariant to illumination in a
single image, no geometrical constraints are used, while our method allows us to
estimate the surface and thus enforce the integrability constraints even for a single
image. We know that the gradient of the surface in x and y direction is equal to
∇xz(p) = hx(p)

hz(p) = hxz(p) and ∇yz(p) = hy(p)
hz(p) = hyz(p). Instead of calculating

the depth map directly, we estimate the variations uz, using the following equation:

uz = arg minuz ||∇xz +∇xΦuz − ĥxz||2 +

||∇yz +∇yΦuz − ĥyz||2
�� ��9.12

A similar procedure to obtain the face surface is performed in [112] to find
the variations from the surface model. This can be solved using a linear least
square solver. The final depth map can be computed using Equation 9.3. In our
case, we combine the depth map and albedo models, to calculate the final depth
map taking into account the correlation between the albedo, see Section 9.2.2. A
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practical problem in calculating the depth maps is that vectors which are almost
perpendicular to the viewer direction sometimes cause large spikes. In order to
deal with this problem, we remove these locations. In this case, we are still able
to calculate the variations of the surface because PCA can also be applied on an
incomplete set of locations.

9.2.7 Estimation of the albedo

In the previous section, we estimate the illumination conditions and the surface
from which we can obtain the surface normals n(p). The only remaining unknown
in Equation 9.2 is the albedo ρ. To calculate the albedo, we can solve Equation
9.2 for every pixel value, but we observe that there are sometimes erroneous effects
in the albedo caused by the user independent shadow model el(p), because the
shadow mapping is not precise. To overcome this problem, we use Bayes theorem
which allows us to calculate a MAP estimate for the albedo. The MAP estimate
of the albedo at a certain location is defined as follows:

P (ρ(p)|b(p)) =
P (b(p)|ρ(p))P (ρ(p))

P (b(p))

�� ��9.13

In order to obtain the albedo term, we can maximize the following Equation:

ρnoshadow(p) = arg max
ρ(p)

P (b(p)|ρ(p))P (ρ(p))
�� ��9.14

= arg max
ρ(p)

N
(
ρ(p)− b(p)

µr(p)
, σr(p)

)
×N

(
µρ(p), σρ(p)

)�� ��9.15

In Equation 9.15, we define a mean reflection term µr(p) =
∑
l n(p)T slilel(p) and

the varations of the reflection term σ2
r(p) =

∑
l n(p)T slilσ2

l (p) (see Section 9.2.1
for σ2

l ) and assume that the shadow maps are Gaussian distributed. Using the
training set from which we calculate the PCA models, we can also easily determine
the mean albedo µρ(p) and standard deviation of the albedo σρ(p) at certain loca-
tions necessary in Equation 9.15. By taking the derivative of the log probabilities,
we find a shadow free albedo term ρnoshadow(p). From this shadow free albedo
ρnoshadow, we computed the variations uρ using a linear least square solver giving
us all the subspace model parameters, see Section 9.2.2.

9.2.8 Evaluation of the obtained illumination conditions,

surface and albedo

In Sections 9.2.6 and 9.2.7, we compute both the variations of the surface and
albedo. With these variations, we can determine the variation of the combined
models, see Equation 9.5 and give the estimates for the surface and albedo using
Equations 9.6 and 9.7. Given the estimated albedo and surface, together with
the illumination conditions found in Section 9.2.4, we can reconstruct an image
b̂ which should be similar to the original image. This can be measured using the
sum of the square differences between the pixel values. It is also interesting to
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monitor the variations from the PCA model, which shows if overfitting occurs at
certain light directions. For this reason, we use an evaluation measure, which is
similar to the measure used in [20]:

E =
1
σb
‖b− b̂‖2 +

K∑
k=1

u2
t(k)
λt(k)

�� ��9.16

In this case, σb controls the relative weight of the distance between the original
and reconstructed image, which is the most important factor to minimize, λt

are the eigenvalues of the depth map and albedo model, see Equation 9.5. This
evaluation measure allows us to determine when the iterative estimation procedure
convergence.

9.2.9 Refinement of the albedo

The albedo ρnoshadow(p), calculated from the MAP estimate and subspace model,
misses details (Section 9.2.7). To recover these details, we perform two steps. In
the first step, we determine the albedo using the original facial image to recover
the details removed by the subspace models. In the second step, we filter the
recovered albedo by using the correlation between the different positions in the
images to remove spikes.
The first step is to recover the details in albedo based on the image, where we use
the following equation:

ρdetails(p) =
b(p)
µr(p)

�� ��9.17

In Equation 9.17, we assume that both the surface normals and illumination con-
ditions are correctly estimated.
In the second step, we remove erroneous effects in the albedo caused by using a
user-independent shadow model, which usually results in spike in areas containing
the transition between shadow and light. To suppress the spikes, we learn the rela-
tionship between albedo at neighboring locations using correlation. Based on the
correlation between neighboring locations, we filter the albedo removing spikes if
the correlation between locations expects a different albedo value. If the albedo is
similar to the expected albedo value it will hardly change. The correlation between
locations is learned using a training set. To explain the filter, we use a different
notation, where the location p will be replaced by the subscript x and y.

ρ̂x,y+1
x,y = ρx,y + r

σx,y
σx,y+1

(ρx,y+1 − ρx,y+1)
�� ��9.18

Using statistics, we can predict the value ρ̂x,y+1
x,y at location (x, y) using the

value at location (x, y + 1) given the correlation r between both positions and
the means ρ and standard deviations σ of the albedo determined from a training
set. We perform a similar prediction from all the locations ((x, y + 1) (x, y − 1),
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(x + 1, y) and (x − 1, y)), which surround (x, y). In order to compute the final
albedo map, we use all surrounding locations in the following equation:

ρfinalx,y + λ[ (ρfinalx,y − ρ̂x,y+1
x,y ) + (ρfinalx,y − ρ̂x,y−1

x,y )

(ρfinalx,y − ρ̂x+1,y
x,y ) + (ρfinalx,y − ρ̂x−1,y

x,y ) ] = ρdetailsx,y

�� ��9.19

The final albedo ρfinalx,y is estimated by taking into account the correlation
between surrounding location with a weight factor of λ = 0.2 and as an initial es-
timate we use ρdetailsx,y . To solve Equation 9.19 for an entire grid of albedos, we use
a multigrid method for boundary value problems (Simultaneous Over-Relaxation)
described in [93]. This allows us to determine the final albedo ρfinalx,y . Using this
method, we are able to remove the spikes, but at the same time, we preserve the
details in the final albedo ρfinalx,y .

9.3 Experiments

9.3.1 Training VIG

In order to create the PCA models, it is necessary to obtain a dataset from which
we can calculate both the depth maps and the albedo. One of the important limi-
tations of this method can be the 3D database used for training. This database has
to be sufficient in order to obtain a model which can be used to reconstruct a probe
image. We have experimented with two publicly available databases, namely the
3D FRGC training set (Spring 2003 range images) [90] and the 3D Bosphorus Face
Database [99]. Both databases contain facial images together with their range im-
ages, which gives us for each pixel a 3D coordinate. We register the facial images
to a common coordinate system, using the landmarks provided by the databases.
From the range maps provided with the images, we calculate both depth maps
and the surface normals, where we use some simple spike removal and hole filling
methods to obtain smooth depth maps. Because the illumination in the images
is controlled, it is possible to estimate the illumination conditions from both the
surface normals and the appearance in the image. This also allows us to compute
the albedo. A disadvantage of the 3D FRGC training set is that the images are
overexposed, this makes the albedo estimation less accurate.
In our earlier work, we used the 3D FRGC training set to create our face model.
The 3D FRGC training set contains individuals that are also present in Exper-
iment 4 of the FRGCv2 database. A disadvantage of this set, however, is that
all faces have a neutral expression. The 3D Bosphorus Face Database contains
all kinds of expressions and other variations and this database has no overlapping
individuals with Experiment 4. Still the results that are achieved by training us-
ing 3D Bosphorus Face Database are better, mostly because of the presence of
expressions. For this reason, we use the 3D Bosphorus Face Database to obtain
the PCA models of the depth map and albedo. We have observed that a better
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training set has a large effect on the face recognition results. Important is that
this database contains all kinds of variations (expression, race differences), but at
the same time is taken under controlled conditions, like illumination, registration
and pose.

9.3.2 Experimental Setup

In order to test the performance of illumination correction methods, we use both
the CMU-PIE [109] and the FRGCv2 [90] database. Most methods for illumination
correction are evaluated using databases recorded in a laboratory, with images
illuminated using a single light source on a predetermined grid. The CMU-PIE
database is such a database, which allows us to compare VIG with other methods
under different predetermined illumination conditions. A problem of these kinds
of databases is that bootstrap data from the same predetermined light sources
is often used, which positively biases the results. In this research, we chose to
also evaluate the methods on images taken under uncontrolled conditions. For
this reason, we have performed FRGCv2 experiment 4, where a single gallery
image taken under controlled illumination conditions is compared with a probe
image taken under uncontrolled illumination conditions. This matches the real-
life problem that all illumination correction methods aim to solve. Although one of
the biggest challenges is to remove the illumination variations from these images,
there are more challenges in face recognition, see [78], that are not addressed in this
paper. Examples of problems other than illumination are (small) pose variations,
expressions, occlusions due to caps and glasses, which all have negative effects on
the final recognition results.
In order to compare our illumination correction method, we have used the PCA-
LDA Likelihood ratio classifier described in [126] and the Kernel Correlation Filter
(KCF) together with the normalized cosine distance [101] for face recognition.
The latter method already achieves good performance on the FRGCv2 database,
see [101], together with the illumination correction method of Gross et al [50]. In
the literature, several illumination correction methods that use local regions show
promising results on the FRGCv2 database. For this reason, we use Gross et al [50]
and Tan et al [119] for comparison. One of the best methods that uses the entire
image for illumination corrections is the method of Zhang et al in [139], which uses
the Spherical Harmonics representation. For comparison, we have developed our
own implementation of this method. This method is trained on the same database
as is used to train our illumination correction methods.

9.3.3 Face Recognition Results on CMU-PIE database

We performed a simple experiment on the CMU-PIE [109] database in order to
compare our illumination correction method with other methods. In this exper-
iment, the difficult images of CMU-PIE illuminated without ambient light are
used. In Figure 9.2, we show that our method is able to render the face images
with different illumination conditions, although this becomes difficult, if almost
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Figure 9.2: Rendering faces under different illumination conditions: the

first row contains the recorded images which VIG has to render given the input

images on the first columns. The rest of the rows contain the rendered images given

the input image
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Uncorrected Zhang et al Gross et al Tan et al VIG
72.2% 74.5% 86.8% 88.1% 90.8%

Table 9.1: The face recognition results of the PCA-LDA likelihood ratio on the

CMU-PIE database in recognition rates

Figure 9.3: The output of the illumination correction methods: The first

row contains the original images, the second row shows the output of local pre-

processing method of Gross et al, in the third row are the images corrected the

global illumination correction method of Zhang et al, the last row shows the images

obtained using VIG

half of the face contains shadow (third row of Figure 9.2). For the face recog-
nition experiments, the images are corrected to frontal illumination in order to
make them comparable. We used 20% of the 68 subjects for training and used the
frontal illuminated images as gallery images. We repeat this experiment 20 times,
randomly assigning subjects to the training and test set. In Table 9.1, we show the
results in face recognition. The illumination correction methods easily improve the
recognition results because it mostly contains illumination variations. We observe
that VIG performs better than the other illumination correction methods on this
face database.

9.3.4 Face Recognition Results on FRGCv2 database

In Experiment 4 of the FRGCv2 database, 3 sets of images are defined: a training
set, a target set and a query set. All the images of these sets are corrected using all
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illumination correction methods. The output of the different illumination correc-
tion methods is shown in Figure 9.3, where the uncorrected images are in the first
row and the corrected images with the methods of respectively Gross et al, Zhang
et al and VIG are in the second, third and fourth row. Figure 9.3 shows that the
illumination correction methods are also used on images taken under controlled
conditions (the first two colums), where VIG seems to only change the overall light
intensity of the image. The other four images are taken under uncontrolled condi-
tions, which include sometimes difficult illumination conditions as can be seen in
the fourth image. We observe that VIG is able to remove most of the cast shadows
caused by the nose, especially visible in the fourth image. Furthermore, it is able
to correct for the dark areas (right side) in the fourth image. We can, however,
not correct for the cast shadows on the cheeks caused by the glasses in the fifth
image, because our model does not include glasses nor the reflections they cause.
In order to evaluate the effects of the illumination corrections methods on the face
recognition, we setup the following experiment. After the illumination correction
on all images, the face recognition methods are trained using the corrected images
in the training set. We perform a one-to-one comparison described by FRGCv2
database, where we compare one image from the target set (controlled illumina-
tion) with one image from the query set (uncontrolled illumination). The face
recognition methods used for this comparison are the PCA-LDA Likelihood ratio
and the Kernel Correlation Filter (KCF). The Receiver Operating Characteristics
(ROC) of these methods are presented in Figures 9.4(a) and 9.4(b). We observe
from Figure 9.4(a) that the Virtual Illumination Grid method clearly performs
best in combination with the Likelihood ratio, followed by the method of Gross
et al. The other global illumination correction method of Zhang et al performs
better than uncorrected images at FAR ≤ 1 %. Using the KCF, we observe that
the difference between VIG and Gross et al is small. The method of Gross et al
reaching similar results as reported in Figure 9.4(b) of the paper on KCF [101],
where they performed the same experiment. In the same paper, the KCF achieves
even better recognition results, by using the gallery images to train a SVM. We
did not perform this experiment, because it deviates for the FRGC protocol. The
results of Zhang et al are in this experiment better than uncorrected images. By
comparing Figures 9.4(a) and 9.4(b) with each other, the likelihood ratio reaches
best results in combination with VIG.

9.3.5 Fusion

In [28], we have fused local and global illumination method in order to improve the
performance. In this paper, we fuse VIG with the method of Gross et al in order
to investigate if the combination of both methods improves the performance. To
fuse both methods, we use simple z-score normalization on the similarity scores.
The ROC curves of this experiment are shown in Figure 9.5. The combinations
improve the results of the Likelihood ratio slightly and the KCF much more. We
also combine all scores achieving a much better performance than each of the
separate classifiers. Of course, other face recognition methods can be used to even
further improve the face recognition. However, here the goal is to show that the
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Figure 9.4: ROCs for the FRGCv2 database Experiment 4 of the PCA-LDA
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combination of VIG and Gross et al improves the performance of well-known face
recognition methods.

9.4 Discussion

In the previous section, we have shown that VIG improves the face recognition
results. In order to provide more inside information about VIG, we discuss the
following two issues: The first issue concerns the limitations of our method and
we discuss the influence of these limitations on the face recognition results. The
second issue is the accuracy of the depth maps in relationship with the reflectance
models.

9.4.1 Limitations

We have shown that VIG performs well for the uncontrolled conditions in Exper-
iment 4, for instance in Figure 9.4(a), although fusion with the method of Gross
et all still shows room for improvement. We observed that the main reason is the
use of reflectance and face models, which are not able to include all exceptions.
Baseball caps, for instance, cause a cast shadow in the face, making it impossi-
ble to estimate the correct illumination conditions using the entire image, as can
be observed in Figure 9.6. Another well-known problem in face recognition are
glasses, which reflect the light in other directions than anticipated by the reflection
model, making the estimation of the face shape difficult. In order to solve these
problems, a detection method for glasses and cap can be developed, allowing us
to ignore parts of the image in these cases. Although VIG might not always work
in case of the mentioned exceptions, the results show a clear contribution of VIG
in most other cases. By comparing VIG with the method of Gross et al, which
gives us an illumination invariant representation of the face, we observe from the
fusion results that both methods make different errors. The illumination invariant
representation of Gross et al is able to deal with for instance caps and glasses,
because it uses local assumptions. On the other hand, VIG creates a reconstruc-
tion based on more global assumptions which cannot be modelled by Gross et al.
The advantage is that the reconstruction will give us more information, like the
estimated depth map of the face. This can be used to incorporate 3D and 2D
face recognition, which is impossible with illumination invariant representation of
Gross et al.

9.4.2 Accuracy of the Depth Maps

We estimate the depth maps based on the Lambertian reflectance model and a
PCA model of depth maps of faces. From literature, we know that the Lamber-
tian reflectance model is a reasonably good estimate of the reflectance of the skin,
but more accurate reflectance models are known. Bidirectional Reflectance Distri-
bution Functions (BRDF) like the Phong and Torrance-Sparrow model probably
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Figure 9.6: Examples of face images containing baseball caps - Because

of the cast shadow in the facial images caused by the baseball caps, VIG is unable

to determine the correct illumination conditions. The first column shows the entire

face, the second column is the region of interest used by VIG, the last column

contains the corrected image

provide a better explanation. The disadvantage of these models is that they are
non-linear, which has large consequences on the computation time. Another possi-
bility is to measure a BRDF for human skin, using 3D face acquisition equipment,
although we are not sure that this BRDF holds for different types of light. Be-
cause we use the Lambertian reflectance model throughout this paper, we expect
that the depth maps are not always accurate in certain regions. We also observe
that PCA models have limitations in modelling details. On the other hand, PCA
models are able to correct certain mistakes by enforcing domain specific knowl-
edge. From Figure 9.7, we observe that the depth maps estimated using VIG fail
to recover the sharp contours. Instead, we obtain a smooth version of the surface.
Similar results can be observed in the research presented in [8], where shape from
shading is compared with measured profiles. However, Figure 9.7 also shows that
VIG is to a certain extend able to model expressions, like the round cheeks in
the second row. Although, we show that the accuracy of the depth maps is lim-
ited, this does not have to affect the face recognition results. The reason that VIG
might calculate an incorrect depth maps is that our model can be biased to certain
explanations. As long as for individuals the same mistakes are made in calculating
the depth maps, these mistakes do not have to affect the face recognition results.
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Figure 9.7: Comparison of depth maps using the 3D FRGC database:

First column contains the original image, second column shows the correction of

VIG, third column is the 3D range map acquired with a laser-scanner and in last

column our estimate of the depth map is given.

9.5 Conclusions

We present a new method to correct for illumination effects in facial images. Al-
though multiple methods for illumination correction in facial images are described
in the literature, this method has some advantages with respect to most other
methods. First of all, we assume and model multiple light sources using a Virtual
Illumination Grid (VIG). This allows us to achieve good recognition results, espe-
cially for facial images taken under uncontrolled conditions. Secondly, we use two
PCA models, both for the depth maps and the albedo and we couple them, taking
into account the correlation between depth map and albedo. Thirdly, we are able
to estimate a depth map of the surface, which can be useful for improving face
recognition under pose variations or for comparison with 3D face recognition. We
test multiple methods on the FRGCv2 database using Experiment 4, where faces
are recorded under uncontrolled conditions. Our experiment is different from most
other illumination correction methods, which are tested on databases recorded in
laboratories. In these cases, the illumination directions are predetermined and
they include usually only a single light source, while in truly uncontrolled condi-
tions, both the illumination directions and the number of light sources are usually
unknown. We show that VIG is able to improve the results of different face recog-
nition methods significantly under these uncontrolled conditions. Furthermore, we
fuse VIG, which is a global illumination correction method, with a local illumina-
tion correction by Gross et al [50], which further improves the recognition results.
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Conclusion Part III

In this part, we have first answered the specific research question: Which measures
can be taken to improve the face recognition system for facial images captured un-
der uncontrolled illumination conditions? In camera surveillance, face images are
recorded in uncontrolled conditions, which causes a serious decrease in the perfor-
mance of the face recognition methods in comparison with images recorded under
controlled conditions. The final research question is: How much improvement of
the face recognition performance is obtained with the measures mentioned before?
We have shown in Chapter 6 that model-based illumination correction methods
are able to improve the face recognition results. We improved this method in
Chapter 7 and Chapter 9, using more light sources to model the uncontrolled con-
ditions. This also resulted in a performance gain in face recognition. We combined
our model-based method, which uses a global physical model of the illumination,
with a correction method, which performs correction based on the local region.
By combining these methods, we achieved significant better results in face recog-
nition.
The illumination correction method determines the illumination conditions using
an iterative approach in which illumination, the 3D surface and corresponding
albedo are estimated to find the best explanation for the appearance in an image.
In the case of video recording, the illumination conditions change only slowly over
time. In this situation, the illumination correction can be performed more efficient
by using information determined for the previous frames.
In Chapter 7 and 9, we have shown that our illumination correction method is
also able to estimate the surface. This surface estimate can be useful for 3D face
recognition and pose correction. We know that the accuracy of this estimation is
limited, because of the reflectance and surface models that are used in our illumi-
nation correction method. Our opinion is that further research on the reflectance
properties of the face can improve the estimation of the 3D surface of the face.
This can be exploited in problems like pose correction and 3D versus 2D face
recognition.
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10.1 Summary

We have presented a detailed investigation of face recognition in camera surveil-
lance. In this investigation, research has been performed on the various compo-
nents of the face recognition system: face detection, face registration, face intensity
normalization and face comparison. We have studied the different characteristics
of faces recorded by CCTV systems that might cause problems for face recogni-
tion. In this research, the focus has been on the problems that occur due to the
low resolution of the faces in recordings and the uncontrolled illumination effects
that change the appearance of the faces. The effects of these problems have been
investigated and we have developed methods to improve the performance of the
face recognition system under these specific problems.
In chapter 2, we reviewed the components of a face recognition system. The first
component is face detection, which localizes the face in an image or video record-
ing. Background substraction, skin color detection and appearance based learning
methods can be applied for this purpose. The second component is face regis-
tration, which aligns the images to a common reference coordinate system. Face
registration normally relies on landmarks and can be based on both the appear-
ance of the landmarks and the relations between landmark positions. The third
component is the face intensity normalization, which changes the intensity values
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in order to make the face better comparable. This methods aims to compensate,
for instance, the illumination effects in a face image. We make a distinction be-
tween methods that use local regions to normalize the images and methods that
estimate a global physical model. The last component is the face comparison (of-
ten called face recognition), which compares a probe image with gallery images
in order to determine or verify the identity of the user. There are two categories
of face comparison methods, the first category is the holistic face comparison and
the second category is face comparision based on local features.
In camera surveillance, the resolution of the faces in the recordings is usually low.
In part I, we have performed research on the effects of the resolution on the face
recognition system. In this research, we have focussed on the effect that the face
resolution has on the face registration and comparison component, because these
components seems to be most sensitive to resolution changes. We have shown that
our face recognition system achieves the best results at a face resolution of 32×32
or higher. At lower resolutions, the results in face recognition decrease rapidly.
We have also shown that correct registration using manually labelled landmarks
achieve much better results in face recognition than face registration based on
automatic landmarking.
In part II, we have improved the face registration, focussing on low resolution
facial images. Accurate face registration is important for face recognition. Face
registration is usually performed by landmark based face registration methods.
These methods perform poorly if the resolution of the faces is low, because the
resolution of the individual landmarks becomes even lower. For this reason, we
have developed holistic face registration methods. These methods find the opti-
mal registration parameters by maximizing the similarity which is determined by
holistic face recognition methods. Firstly, we have shown that these registration
methods find the registration parameters as accurately as registration based on
manually labelled landmarks. Secondly, these registration methods are able to
register face images under low resolutions while maintaining a high accuracy.
In camera surveillance, faces are recorded under uncontrolled illumination condi-
tions. In part III, we have corrected for the illumination in faces by developing
face intensity normalization methods that model the reflectance on the face sur-
face. In these methods, we have used a model of the face surface and albedo,
which is determined from a grey-value image together with a 3D range image. In
these methods, we have focussed on uncontrolled illumination conditions, using
models that explain the reflectance even if difficult shadow regions are present.
We have shown that our face intensity normalization methods improve the face
recognition results. A byproduct of our normalization is an estimate of the face
surface. This estimation could be further used for 2D vs 3D face recognition and
pose correction. We have combined methods that use the local region in the im-
ages to correct for illumination with our face intensity normalization methods. In
order to combine these methods, we have used both score-level and decision-level
fusion to use the advantages of both categories. By combining two methods from
different categories, the final results in face recognition have improved significantly.
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10.2 Conclusions

The goal of this research was to improve the face recognition performance for
camera surveillance. Face recognition for camera surveillance is difficult, because
of the low resolution of the face in the recording, the uncontrolled illumination
conditions, pose variations, and occlusions of the face due to, for instance, caps
and sun glasses. In this research, our focus has been on solving the problems
that occur due to the low resolution and illumination variations. In order to solve
these problems, we investigate their effects on the various components of the face
recognition system. We have focussed on answering the following questions:

What is the effect of both low resolution and illumination on the dif-
ferent components (Face Detection, Face Registration, Face Intensity
Normalization and Face Recognition) of the face recognition system?
Resolution: In part I, we have performed a study on the effect that face resolution
has on the performance of the different components in the face recognition system.
This study has focussed on the face registration and recognition components, be-
cause they seem to be most sensitive to the decrease in facial resolution. The face
recognition system with which we have experimented, gives good results for face
resolution of 32×32 and higher. Below a face resolution of 32×32 the performance
of face recognition decreases rapidly. A face resolution of 32 × 32 is normal for
the camera surveillance scenarios we have focussed on. Although the automatic
face registration performs also best at 32 × 32 or higher, we have discovered a
large difference in face recognition results between registration using automatic
and manually found landmarks.
Illumination: During this study, we have performed experiments with images
taken under controlled and uncontrolled illumination conditions. These exper-
iments show that both the face registration and recognition components suffer
from uncontrolled illumination conditions. During these experiments, we have not
used an illumination correction method in the face recognition system. This has
shown the importance of a proper face intensity normalization and it has given an
indication of the improvements that can be achieved by using such methods.

Which measures can be taken to improve the face recognition system
for low resolution facial images and images captured under uncontrolled
illumination conditions?
Registration: For the low resolution facial images, we have observed that the ac-
curacy of registration could be improved. For this reason, we have developed a
holistic based registration method. The advantage of this method is that is uses the
entire facial image to find the registration parameters. In case of a face recorded
under low resolution, landmark based face registration methods fail to find the
landmarks accurately. Our holistic based registration method can find the reg-
istration parameters accurately by maximizing the similarity score produced by
holistic face recognition methods. In chapter 5, we improved this registration
method further by using edge features and an evaluation criterion for registration
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instead of maximizing the scores for holistic face recognition methods.
Illumination: In order to correct for the illumination in the face images, we have
developed three illumination correction methods. In these illumination correction
methods, we model the behavior of the reflectance. We also use models of the face
surface and albedo, obtained from facial images together with 3D range images.
Using both reflectance and face models, we can reconstruct the illumination con-
ditions in the face image. This also allows us to render a face image under frontal
illumination. The face rendered under frontal illumination are easier to compare
for face recognition methods. An advantage of this method is that we also obtain
an estimate of the facial surface, which can be used in pose correction or 2D vs
3D face recognition. We have also combined our illumination correction methods
with methods that use the local region around a pixel to correct for illumination.
To combine these two methods, we have used score or decision level fusion. The
results in face recognition have become better than the results of the separate
methods.

How much improvement of the face recognition performance is ob-
tained with the before mentioned measures?
Registration: For the face registration, manually labelled landmarks are often used
as a groundtruth. Especially on the FRGCv2 database, there are no registration
methods published in literature that outperform the manually labelled landmarks.
The holistic registration methods developed by us have a similar performance as
registration using manually labelled landmarks. The best landmark based meth-
ods give of 87% verification rate at 0.1% FAR in face recognition, while the holistic
registration method achieves a performance in face recognition of around 91% ver-
ification rate at 0.1% FAR on FRGCv2 database experiment 1. This registration
methods is also able to maintain accurate registration results at lower resolutions
down to 32× 32. This makes our registration method suitable for camera surveil-
lance applications, as well as other face recognition applications.
Illumination: By using our illumination correction methods, we have achieved a
substantial improvement from a 30% verification rate at 0.1% FAR with uncor-
rected images to a 53% verification rate at 0.1% FAR . Our illumination correction
method outperform the other illumination correction methods which we used for
comparison. The methods are tested on the FRGCv2 database, where experiment
4 is used to compare facial images recorded in controlled conditions with facial im-
ages recorded in uncontrolled conditions. Our illumination correction method is
one of the first model-based methods with reported results on facial images taken
under uncontrolled conditions. Most other model-based methods only report re-
sults on databases recorded in a laboratory, where a predefined light grid is used.
We also combined our model-based method with local preprocessing methods,
achieving significant improvements in comparison with the best separate illumina-
tion correction method.
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10.3 Recommendations

One of our recommendations is that a standard experiment needs to be designed for
camera surveillance scenarios. This will highlight new problems and make compar-
ison with other methods easier. We have performed some experiments with CCTV
recording, but this data could not be made publicly available and it also did not
contain cross-session data. Databases with cross-session data contain face images
recorded over different time sessions, which is important for realistic results. The
FRGC database contains cross-session data making this database realistic for mul-
tiple applications. This means that even if some of the methods might not always
be suitable for camera surveillance, these methods can also be applied in other
application, like access control. Recently, the creators of the FRGC database have
developed new challenges in the Multiple Biometric Grand Challenge [84]. These
challenges contain video recordings of persons, which might give more realistic
camera surveillance conditions. But still, these created scenarios are not similar
to real camera surveillance scenarios. In the other recommendations, we will focus
more on the technical questions that are left unanswered. These recommendation
are categorized for the three major parts of our thesis:

• Resolution: In part I, we investigated the effects of the resolution of the
faces on the different components of the face recognition system. In this in-
vestigation, we focussed especially on the face registration and recognition,
because they were the most sensitive. In part III, we experimented with
more advantage face intensity normalization methods. One of the questions
that remains is: what are the effects of resolution on these face intensity
normalization methods? Another issue is that in this research, we have ex-
perimented with several well-known holistic methods for face recognition.
An interesting question is how state of the art face recognition methods per-
form at low resolutions? Although, we have limited the research in part I to
the face resolution using images, new research can be done on video record-
ings. In case of video recording, super-resolution methods to enhance the
resolution can be further investigated.

• Registration: In part II, we developed new holistic registration methods to
perform accurate face registration on low resolution images. Although this
already seems to work well on face images recorded under uncontrolled con-
ditions, further improvements might be obtained by using the illumination
correction methods.. In this case, illumination correction methods based on
the local regions have to be used because they do not rely on a face model
that requires registration. Another recommendation is to look at video se-
quences, the face registration can be performed in multiple frames, which
improves the computation time of the method if the difference between the
registration in the frames changes only slightly. Finally, the face registra-
tion can be extended to correct for pose variation. In this case, registration
parameters to model the poses and a 3D model of the face to render images
under poses are required to maximize a similarity functions.

• Illumination: In part III, a model-based illumination correction method
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is presented which is able to correct for uncontrolled illumination in facial
images. The models that are used in this method to describe the behavior
of the illumination are simplifications of reality. More research has to be
performed on the errors caused by these models, which can be done using
face images together with accurate 3D depth maps. Another important is-
sue in this research is the models of the surface and albedo. Acquisition in
more controlled environments may improve the estimation of the surface and
albedo models, which can improve the estimate of the surface and albedo.
The estimate of the surface can also be used for pose correction or com-
parison under pose. The last recommendation is that it can be interesting
to perform the illumination correction method in video sequences, where
the illumination conditions usually change only slowly in time. This proba-
bly narrows the search for the illumination conditions, which can make the
method faster and more accurate.
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Samenvatting

Dit proefschrift beschrijft een gedetailleerd onderzoek naar gezichtsherkenningssys-
temen voor cameratoezicht (camera surveillance). In dit onderzoek wordt er
gekeken naar de technische kant van de gezichtsherkenningssystemen. Een normaal
gezichtsherkenningssysteem is op te delen in verschillende componenten: gezicht-
slokalisatie, gezichtsregistratie, gezichtsnormalisatie en gezichtsvergelijking. Er is
onderzocht welke problemen er zijn met gezichten die zijn opgenomen door camera
surveillance systemen. In dit onderzoek hebben we ons beperkt tot twee proble-
men, namelijk de lage resoluties van de gezichten in afbeeldingen en de veranderin-
gen die ongecontroleerde belichting op het gezicht veroorzaakt in een afbeelding.
We hebben eerst onderzocht welke effecten deze twee problemen hadden op een
gezichtsherkenningssysteem, waarna we nieuwe methodes hebben ontwikkeld om
de prestaties van gezichtsherkenningssystemen in cameratoezicht te verbeteren.
Om gezichtsherkenningssystemen te verbeteren, hebben we eerst gekeken uit welke
componenten een gezichtsherkenningssysteem bestaat. Er wordt eerst een overzicht
gegeven worden van deze componenten: De eerste component is gezichtslokalisatie,
dat de positie van een gezicht in een afbeelding vindt. Monitoren van de achter-
grond in video, onderscheiden van huidskleur en de vorm van het gezicht kunnen
gebruikt worden voor de lokalisatie. De tweede component is de gezichtsregis-
tratie, waarbij het gezicht in een standaard positie wordt gebracht met een stan-
daard grotte, zodat afbeeldingen kunnen worden vergeleken. Gezichtsregistratie
gebeurt normaal op basis van ”landmarks” (orintatiepunten in het gezicht), waar-
bij zowel de intensiteitswaarden in de afbeelding als the relatie tussen de ”land-
marks” worden gebruikt. De derde component is de intensiteitnormalisatie, dat
de intensiteitswaarden in een afbeelding kan standaardiseren om gezichten beter
te vergelijken. Dit heeft voornamelijk het doel om de belichting in afbeeldingen te
compenseren. Hierbij hebben wij onderscheid tussen lokale en globale methodes.
De laatste component is de gezichtsvergelijking (ook vaak gezichtsherkenning ge-
noemd), die een inkomende (”probe”) afbeelding van een gezicht vergelijkt met
gezichten die al in het systeem zitten, de ”gallery” wordt gebruikt om de identiteit
van de gebruiker te achterhalen. Er zijn twee categorien van gezichtsvergelijking
methodes, de eerst categorie gebruik het gehele plaatje, terwijl in de tweede cate-
gorie gebruik wordt gemaakt van lokale kenmerken.
In camera surveillance is de resolutie van de gezichten in de opnames meestal laag.
In Deel I van dit proefschrift is onderzoek gedaan naar het effect dat deze lage reso-
lutie heeft op het hele gezichtsherkenningssysteem. Er was al wel onderzoek gedaan
naar het effect van lage resolutie op de gezichtsvergelijking component, maar er
was nog niet gekeken naar het complete systeem. In ons onderzoek hebben we
ons vooral gericht op de effecten van de resolutie op de gezichtsregistratie en de
gezichtsvergelijking, omdat deze componenten het meest gevoelig waren voor de
lagere resoluties. We hebben laten zien dat onze gezichtsherkenningssysteem bij
een resolutie van 32 × 32 of hoger het beste werkt. Op lagere resoluties nemen
de resultaten in gezichtherkenning snel af. We hebben ook laten zien dat correcte
gezichtregistratie met handmatig verkregen ”landmarks” veel betere resultaten
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oplevert dan de gezichtregistratie met automatisch gevonden ”landmarks”.
Door het grote verschil tussen handmatig en automatische gezicht registratie,
hebben we in Deel II methodes ontwikkeld die zelfs op lage resolutie een goede
registratie kunnen uitvoeren. Nauwkeurig gezichtsregistratie is belangrijk voor de
opvolgende gezichtsvergelijking component. Zoals al opgemerkt, gezichtsregistratie
wordt normaal gesproken gedaan door methodes die gebruik maken van ”land-
marks”. Deze methodes werken slecht als de resolutie van de gezichten erg laag
is, omdat dan ook de resolutie van de regio waar de individuele ”landmarks” zich
bevinden nog lager wordt. Wij hebben een holistische gezichtsregistratie meth-
ode ontwikkeld. Deze methode vindt de optimale registratie parameters door
de overeenkomst tussen gezichten bepaald door een holistische gezichtsherken-
ning methodes te maximaliseren. We hebben hierbij laten zien dat deze meth-
odes in staat zijn de registratieparameters net zo nauwkeurig te vinden als reg-
istratie gebaseerd op handmatig geselecteerde ”landmarks”. Daarnaast is deze
registratiemethode in staat afbeelding van gezichten op lage resolutie met hoge
nauwkeurigheid te registreren.
In camera surveillance worden gezichten vaak opgenomen onder ongecontroleerde
belichtingscondities. In Deel III, hebben we gezichtsnormalisatie methodes on-
twikkeld voor het corrigeren van belichting in gezichten. Deze methodes maken
gebruik van de reflectie van het licht op de 3D vorm van het gezicht. Er zijn mod-
ellen gebruikt van de 3D vorm van het gezicht en de ”albedo” (reflectie factor) op
het gezicht. Onze intensiteitnormalisatie richt zich vooral op het corrigeren van
ongecontroleerde belichtingsomstandigheden, waarbij er modellen zijn gebruikt de
reflectie zelf met ingewikkelde schaduw regio’s kunnen verklaren. Door gebruik
te maken van onze intensiteitnormalisatie verbeteren de resultaten van de gezicht-
sherkenningssysteem. Onze intensiteitnormalisatie geeft ons ook nog een schatting
van de 3D vorm van het gezicht. Dit kan worden gebruikt voor 2D/3D gezicht-
sherkenning en het corrigeren van gezichten waarbij mensen niet in de camera
kijken. We hebben ook methodes onderzocht die locale regio’s gebruiken voor de
belichtingcorrectie en deze methodes hebben we gecombineerd met onze gezicht-
snormalisatie methode. Om deze methode te combineren is er gebruik gemaakt
van ”decision-level” en ”score-level” fusion, zodat de voordelen van beide methodes
worden versterkt en significant betere resultaten worden gehaald in gezichtsherken-
ning.
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